Answer:
The Michaelis‑Menten equation is given as
v₀ = Kcat X [E₀] X [S] / (Km + [S])
where,
Kcat is the experimental rate constant of the reaction; [s] is the substrate concentration and
Km is the Michaelis‑Menten constant.
Explanation:
See attached image for a detailed explanation
Answer:
9
Explanation:
The structure of fluorophore used in the experiments has been drawn in the attachment. And from the drawing counting we can say that there are 9 sp2-hybridized carbon atoms present. Fiuorophores are a fluorescent chemical compound that can re-emit light upon light excitation. Normally used to produce absorbance and emission spectra.
If it is heated while it is being compressed or held inside a container as such, the pressure build up while in the container and the pressure can become so much that the container will burst.
Answer:
Fe
Explanation:
The electrical conductivity depends mainly on the type of chemical bonds between the atoms of a compound.
In the case of MgF2, FeCl3 and FeO3, these have the type of ionic bond. This means that in the atoms of the compound there is an electron transfer, to keep eight electrons in the outermost layer and thus resemble the electronic configuration of the inert gas closest to each of the two elements, due to this ions of opposite charges are formed that are held together by electrostatic forces. These types of compounds are good conductors of electricity, however, to have this property, they must be dissolved in water or molten.
In the case of Fe, however, the type of union between atoms is metallic. In this type of junction, valence electrons are quite free inside the metal, which makes it easy for them to move. For this reason, this compound will conduct electricity in a solid state.
<span>According to the law of conservation of energy and due that all the chemical energy is converted to other three types of energy, the total sum of these three energies after the explosion must be the same than the initial energy, that is 100 units.</span>