In this instance we can use the ideal gas law equation to find the number of moles of gas inside the refrigerator
PV = nRT
where
P - pressure - 101 000 Pa
V - volume - 0.600 m³
n - number of moles
R - universal gas constant - 8.314 J/mol.K
T - temperature - 282 K
substituting these values in the equation
101 000 Pa x 0.600 m³ = n x 8.314 J/mol.K x 282 K
n = 25.8 mol
there are 25.8 mol of the gas
to find the mass of gas
mass of gas = number of moles x molar mass of gas
mass = 25.8 mol x 29 g/mol = 748.2 g
mass of gas present is 748.2 g
First, we determine the number of moles of barium phosphate. This is done using:
Moles = mass / Mr
Moles = 1 / 602
Moles = 0.002
Now, we see from the formula of the compound that each mole of barium phosphate has 2 moles of phosphorus (P). Therefore, the moles of phosphorus are:
0.002 * 2 = 0.004
The number of particles in one mole of substance is 6.02 x 10²³. The number of phosphorus atoms will be:
0.004 * 6.02 x 10²³
2.41 x 10²¹ atoms of phosphorus are present
Answer:
The freezing point will be 
Explanation:
The depression in freezing point is a colligative property.
It is related to molality as:

Where
Kf= 
the molality is calculated as:




Depression in freezing point = 
The new freezing point = 
Answer:
The final pressure is approximately 0.78 atm
Explanation:
The original temperature of the gas, T₁ = 263.0 K
The final temperature of the gas, T₂ = 298.0 K
The original volume of the gas, V₁ = 24.0 liters
The final volume of the gas, V₂ = 35.0 liters
The original pressure of the gas, P₁ = 1.00 atm
Let P₂ represent the final pressure, we get;



∴ The final pressure P₂ ≈ 0.78 atm.
Answer:
0.28m/s
Explanation:
Speed is defined as the distance travelled per unit of time. The speed of the turtle is 1.0km/h. Thus, to find the speed in m/s, we need to convert km to m (1km is 1000m), and h to s (1h = 3600s).
<em>Converting units:</em>
1.0km/h * (1000m / 1km) * (1h / 3600s) = 0.28m/s.
The speed of the turtle in meter per second is 0.28m/s