Answer: The temperature rise is 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed by ice = 5280 J
m = mass of ice = 2.40 kg = 2400 g (1kg=1000g)
c = heat capacity of water = 
Initial temperature =
Final temperature =
Change in temperature ,
Putting in the values, we get:


Thus the temperature rise is 
Answer:
Explanation:
Fe⁺² (aq) + 2e⁻ = Fe (s) ; E⁰ = - .44 V
Fe⁺³ (aq) + e⁻ = ® Fe²⁺ (aq) ; E⁰ = + .77 V
Reduction potential of second reaction is more , so it will take place , ie Fe⁺³ will be reduced and Fe will be oxidised .
So reaction in the combined cell will be
2Fe⁺³ + Fe = 3Fe⁺²
cell potential = .77 - ( - .44 )
= 1.21 V .
Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
A. The Average Ecological footprint will need to decrease . 6-11-18
Answer:


Explanation:
Hello,
At first, it turns out convenient to compute the total moles of sodium that will be dissolved into the solution by considering the added amounts of sodium bromide and sodium sulfate:

Once we've got the moles we compute the final volume via:

Thus, the molarity of the sodium atoms turn out into:

Now, we perform the same procedure but now for the bromide ions:

Finally, its molarity results:

Best regards.