The oxidation state of potassium ion K = +1
The oxidation state of oxygen ion O = -2
So, the oxidation state of O2 is = -2 x 2 = -4
Since, KBrO2 is neutral so,
(+1) + (x) + (-4) = Zero
-3 + X = Zero
So, X = +3
The oxidation state of individual bromine atom in KBrO2 is +3
Answer:
C₂H₇F₂P
Explanation:
Given parameters:
Composition by mass:
C = 24%
H = 7%
F = 38%
P = 31%
Unknown:
Empirical formula of compound;
Solution :
The empirical formula is the simplest formula of a compound. To solve for this, follow the process below;
C H F P
% composition
by mass 24 7 38 31
Molar mass 12 1 19 31
Number of
moles 24/12 7/1 38/19 31/31
2 7 2 1
Dividing
by the
smallest 2/1 7/1 2/1 1/1
2 7 2 1
Empirical formula C₂H₇F₂P
Predict what will be observed in each experiment below. Rock candy is formed when excess sugar is dissolved in hot water followed by crystallization. A student wants to make two batches of rock candy. He finds an unopened box of "cane sugar" in the pantry. He starts preparing batch A by dissolving sugar in 500 mL of hot water (70 degree C). He keeps adding sugar until no more sugar dissolves in the hot water. He cools the solution to room temperature. He prepares batch B by dissolving sugar in 500 mL of water at room temperature until no more sugar is dissolved. He lets the solution sit at room temperature
a. It is likely that more rock candy will be formed in batch A.
b. It is likely that less rock candy will be formed in batch A.
c. It is likely that no rock candy will be formed in either batch.
d. I need more information to predict which batch is more likely to form rock candy.
Answer: Option A
Explanation:
More rock candy will be formed in the batch A because it is dissolved in hot water and less rock candy will be formed in batch B because the water is not hot.
Formation of the candies require hot water as the solubility of sugar is more in hot water as compared to normal water.
The sugar will be dissolved in water until the time all the space is filled sugar molecules.
Hence, the correct answer is Option A.
Answer:
The volume of the container is 59.112 L
Explanation:
Given that,
Number of moles of Oxygen, n = 3
Temperature of the gas, T = 300 K
Pressure of the gas, P = 1.25 atm
We need to find the volume of the container. For a gas, we know that,
PV = nRT
V is volume
R is gas constant, R = 0.0821 atm-L/mol-K
So,

So, the volume of the container is 59.112 L
Answer:
Three of the five oxides are expected to form acidic solutions in water
Explanation:
We have different types of oxides : Acidic oxides, Basic oxides, Amphoteric oxides, Peroxides and Higher oxides.
Only acidic oxides will dissolve in water to give an acidic solution.
Considering the given oxides carefully,
- SO2 will dissolve in water to produce H2SO3 which is acidic.
- Y2O3 will dissolve in water to produce Yttrium(III) hydroxide which is basic.
- MgO will dissolve in water only to produce Mg(OH)2 which is also basic.
- Cl2O dichlorine mono oxide will dissolve in water to produce HClO which is acidic.
- N2O5 will dissolve in water to produce HNO3 which is also acidic.