A strong electrolyte like MgCl2 dissociates completely as per the following reaction:

As you can see, from 1 molecule of MgCl2 produces 3 ions on dissociation.
So, 1 mole of MgCl2 produces 3 moles of ions.
Now, Moles of MgCl2 = Volume x Molarity
= 0.04 x 0.345 [Change volume to Litres]
= 0.0138 moles
Now, total moles of ions = 0.0138 x 3 = 0.0414
Answer : 1721.72 g/qt are in 18.2 g/cL
Explanation :
As we are given: 18.2 g/cL
Now we have to convert 18.2 g/cL to g/qt.
Conversions used are:
(1) 1 L = 100 cL
(2) 1 L = 1000 mL
(3) 1 qt = 946 qt
The conversion expression will be:


Therefore, 1721.72 g/qt are in 18.2 g/cL
Answer:
Density is a value for mass, such as kg, divided by a value for volume, such as m3. Density is a physical property of a substance that represents the mass of that substance per unit volume. It is a property that can be used to describe a substance. We calculate as follows:
Volume = 60.0 g ( 1 mL / 0.70 g ) = 85.71 mL
Therefore, the correct answer is option B.
Explanation:
Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles