answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Archy [21]
2 years ago
13

Paige heated 3.00 g mercury (II) oxide (HgO, 216.59 g/mol) to form mercury (Hg, 200.59 g/mol) and oxygen (O2, 32.00 g/mol). She

collected 0.195 g oxygen. What was the percent yield of oxygen?
Chemistry
2 answers:
stepan [7]2 years ago
8 1

the balanced chemical equation for decomposition of HgO is as follows

2HgO --> 2Hg + O₂

stoichiometry of HgO to O₂ is 2:1

number of HgO moles heated are - 3.00 g / 216.59 g/mol = 0.0139 mol

according to stoichiometry of reaction -

number of O₂ moles formed = 0.0139 mol/ 2 = 0.00695 mol

mass of O₂ to be formed - 0.00695 mol x 32.00 g/mol = 0.2224 g

but the actual yield = 0.195 g

percent yield = actual yield / theoretical yield x 100 %

percent yield = 0.195 g / 0.2224 g x 100 % = 87.7 %

answer is 87.7 %

Bas_tet [7]2 years ago
9 0

Answer:

The correct answer is 87.8%

You might be interested in
0.9775 grams of an unknown compound is dissolved in 50.0 ml of water. Initially the water temperature is 22.3 degrees Celsius. A
elena-14-01-66 [18.8K]

Answer:

The enthlapy of solution is -55.23 kJ/mol.

Explanation:

Mass of water = m

Density of water = 1 g/mL

Volume of water = 50.0 mL

m = Density of water × Volume of water = 1 g/mL × 50.0 mL=50.0 g

Change in temperature of the water ,ΔT= 27.0°C - 22.3°C = 4.7°C

Heat capacity of water,c =4.186 J/g°C

Heat gained by the water when an unknown compound is dissolved be Q

Q= mcΔT

Q=50.0 g\times 4.186 J/g^oC\times 4.7^oC=983.71 J

heat released when 0.9775 grams of an unknown compound is dissolved in water will be same as that heat gained by water.

Q'=-Q

Q'= -983.71 J =-0.98371 kJ

Moles of unknown compound = \frac{0.9975 g}{56 g/mol}=0.01781 mol

The enthlapy of solution :

\frac{Q'}{moles}

=\frac{-0.98371 kJ}{0.01781 mol}=-55.23 kJ/mol

The enthlapy of solution is -55.23 kJ/mol.

8 0
2 years ago
Describe how you could determine the specific heat of a sample of a solid substance. You may assume that the substance does not
lesya692 [45]
<span>I would measure the mass of the solid substance. I would prepare a known mass of room temperature water large enough to submerge the solid substance in question. I would place the water in an insulated container. Then I would heat the solid substance to a known temperature. I would measure the temperature of the heated sample and the water. Then I would submerge the sample in the water and allow the sample and the water to reach the same temperature. I would measure this equilibrium temperature. I would interpret the difference in temperature between the heated sample and the equilibrium temperature as the change in temperature in the sample. Given the known mass, the beginning temperature of the water, and the equilibrium temperature I can determine how much energy was transferred from the heated sample to the water. Now the mass of the sample, a change in temperature in the solid substance, and the amount of energy transferred to create the temperature is known. This is sufficient to determine the specific heat of the solid substance</span>
6 0
2 years ago
Read 2 more answers
Be sure to answer all parts. For each reaction, find the value of ΔSo. Report the value with the appropriate sign. (a) 3 NO2(g)
Liono4ka [1.6K]

Answer:

a. -268.13 J/K

b. -279.95 J/K

c. + 972.59 J/K

Explanation:

The value of the change in entropy (ΔS°) can be calculated by:

ΔS° = ∑n*S° products - ∑n*S° reactants, where n is the stoichiometric number of moles.

The values of S° for each substance can be found on a thermodynamic table.

a. 3NO2(g) + H2O(l) → 2HNO3(l) + NO(g)

S°, NO2(g) = 240.06 J/mol.K

S°, H2O(l) = 69.91 J/mol.K

S°, HNO3(l) = 155.60 J/mol.K

S°, NO(g) = 210.76 J/mol.K

ΔS° = (210.76 + 2*155.60) - (3*240.06 + 69.91)

ΔS° = -268.13 J/K

b. N2(g) + 3F2(g) → 2NF3(g)

S°, N2(g) = 191.61 J/mol.K

S°, F2(g) = 202.78 J/mol.K

S°, NF3(g) = 260.0 J/mol.K

ΔS° = (2*260.0 ) - (191.61 + 3*202.78)

ΔS° = -279.95 J/K

c. C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(g)

S°, C6H12O6(s) = 212 J/mol.K

S°, O2(g) = 205.138 J/mol.K

S°, CO2(g) = 213.74 J/mol.K

S°, H2O(g) = 188.83 J/mol.K

ΔS° = (6*213.74 + 6*188.83) - (212 + 6*205.138)

ΔS° = +972.59 J/K

3 0
2 years ago
Now explain your diagnosis. Start your argument by writing something like this: "My group believes that Elisa has/does not have
likoan [24]

Answer:

Explanation:I would need more info to understand this question but explaining molecules is pretty easy tho

4 0
1 year ago
A student is given a sample of a blue copper sulfate hydrate. He weighs the sample in a dry covered porcelain crucible and got a
Nata [24]

Answer:

There are present 5,5668 moles of water per mole of CuSO₄.

Explanation:

The mass of CuSO₄ anhydrous is:

23,403g - 22,652g = 0,751g.

mass of crucible+lid+CuSO₄ - mass of crucible+lid

As molar mass of CuSO₄ is 159,609g/mol. The moles are:

0,751g ×\frac{1mol}{159,609g} = 4,7052x10⁻³ moles CuSO₄

Now, the mass of water present in the initial sample is:

23,875g - 0,751g - 22,652g = 0,472g.

mass of crucible+lid+CuSO₄hydrate - CuSO₄ - mass of crucible+lid

As molar mass of H₂O is 18,02g/mol. The moles are:

0,472g ×\frac{1mol}{18,02g} = 2,6193x10⁻² moles H₂O

The ratio of moles H₂O:CuSO₄ is:

2,6193x10⁻² moles H₂O / 4,7052x10⁻³ moles CuSO₄ = 5,5668

That means that you have <em>5,5668 moles of water per mole of CuSO₄.</em>

I hope it helps!

5 0
2 years ago
Other questions:
  • A criminalist uses a fluorescent chemical called rhodamine, cyanoacrylate fumes, and a uv light source to see a fingerprint on a
    14·1 answer
  • Which gas tank will empty first? acetylene (C2H2) oxygen (O2)
    13·2 answers
  • How many free ions are there on the products side of the total ionic equations that results from the reaction between bismuth 3
    10·1 answer
  • A certain microwave has a wavelength of 0.032 meters. Calculate the frequency of this microwave
    7·1 answer
  • How many atoms of Mg are present in 97.22 grams of Mg?
    8·1 answer
  • A solution that contains 55.0 g of ascorbic acid (vitamin C) in 250.0 g of water freezes at –2.34°C.
    7·1 answer
  • If K3PO4= 0.250M, how many grams of K3PO4 are in 750.0ml of solution? Remember that M is the same as mol/L. Answer: 39.8g
    14·1 answer
  • A student obtained a clean flask. She weighed the flask and stopper on an analytical balance and found the total mass to be 34.2
    14·1 answer
  • QUESTION 2
    15·1 answer
  • Alex's teacher showed him a model of gas particles in a sealed container. How should Alex change the model to show the particles
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!