<span>People with protanopia are unable to sense any ‘red’ light, people with deuteranopia do not sense ‘green’ light and people with tritanopia cannot sense ‘blue’ light. If a person perceives the color green, then the yellow sensitive nerves must work somewhat effectively since green is a combination of yellow and blue. Red-sensitive nerves are most likely not responding properly for this person. The answer is C.</span>
The First Ionization energy of Nitrogen is greater (Not smaller)than that of Phosphorous. This is because going down the group (N and P are in same group) the number of shells increases, the distance of valence electrons from Nucleus increases and hence due to less interaction between nucleus and valence electrons it becomes easy to knock out the electron.
<span>The second ionization energy of Na is larger than that of Mg because after first loss of electron Na has gained Noble Gas Configuration (Stable Configuration) and now requires greater energy to loose both second electron and Noble Gas Configuration. While Mg after second ionization attains Noble Gas Configuration hence it prices less energy.</span>
Answer:
1.123x10⁻⁴ moles of alanine
Explanation:
In order to convert grams of alanine into moles, <em>we need to know its molecular weight</em>:
The formula for alanine is C₃H₇NO₂, meaning <u>its molecular weight would be</u>:
- 12*3 + 7*1 + 14 + 16*2 = 89 g/mol
Then we <u>divide the sample mass by the molecular weight</u>, to do the conversion:
- 1.0x10⁻² g ÷ 89 g/mol = 1.123x10⁻⁴ moles
Molar mass of Neon ( Ne ) = 20.1797 g/mol
m = n * mm
m = 125 * 20.1797
m = 2522.4625 g
hope this helps!
Answer:
The mass of Mg consumed is 21.42g
Explanation:
The reaction is

As per balanced equation, three moles of Mg will react with one mole of nitrogen to give one mole of magnesium nitride.
as given that mass of nitrogen reacted = 8.33g
So moles of nitrogen reacted = 
moles of Mg required = 3 X moles of nitrogen taken = 3X0.2975 = 0.8925mol
Mass of Mg required = moles X molar mass = 0.8925 X 24 = 21.42 g