Thee question is incomplete; the complete question is;
Which elements do not strictly follow the octet rule when they appear in the Lewis structure of a molecule?
Select one or more:
A: Chlorine
B: Carbon
C: Hydrogen
D: Sulfur
E: Fluorine
F: Oxygen
Answer:
chlorine
sulphur
Explanation:
The octet rule states that, for atoms to be stable, they must have eight electrons on their outermost shells.
This rule is not strictly followed by some elements such as sulphur and chlorine. The atoms of these elements can sometimes expand their octet by utilizing the d-orbitals found in the third principal energy level and beyond.
These leads to formation of compounds in which the central atom has more than eight electrons in its outermost shell.
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
<span>Salts are formed by the reaction of bases with water. - FALSE
</span><span>Most salts are ionic and are soluble in water. - TRUE
</span><span>Most salts are insoluble in water and lack electrical charges. - FALSE
</span><span>Solutions of salt and water do not conduct electricity. - FALSE
:)</span>
Answer:

Explanation:
Hello!
In this case, since the applied current for the 50.0 mins provides the following charge to the system:

As 1 mole of electrons carries a charge of 1 faraday, or 96,485 coulombs, we can compute the moles of electrons involved during the reduction:

Then the reduction of Ga³⁺ to Ga involves the transference of three electrons, we are able to compute the moles and therefore the mass of deposited gallium:

Best regards!