Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).
Answer:
The possible structures are ketone and aldehyde.
Explanation:
Number of double bonds of the given compound is calculated using the below formula.

=Number of double bonds
= Number of carbon atoms
= Number of hydrogen atoms
= Number of nitrogen atoms
The number of double bonds in the given formula - 

The number of double bonds in the compound is one.
Therefore, probable structures is as follows.
(In attachment)
The structures I and III are ruled out from the probable structures because the signal in 13C-NMR appears at greater than 160 ppm.
alkene compounds I and II shows signal less than 140 ppm.
Hence, the probable structures III and IV are given as follows.
The carbonyl of structure I appear at 202 and ketone group of IV appears at 208 in 13C, which are greater than 160.
Hence, the molecular formula of the compound
having possible structure in which the signal appears at greater than 160 ppm are shown aw follows.
Answer:
1.59mol/L
Explanation:
Data obtained from the question include:
Mass of MgCl2 = 151g
Volume of water(solvent) = 1L
Now, let us calculate the number of mole of MgCl2. This is illustrated below:
Molarity Mass of MgCl2 = 24 + (2x35.5) = 24 + 71 = 95g/mol
Mass of MgCl2 = 151g
Number of mole of MgCl2 =?
Number of mole = Mass /Molar Mass
Number of mole of MgCl2 = 151/95
Number of mole of MgCl2 = 1.59mole
Now we can calculate the molarity of MgCl2 as follow:
Mole = 1.59mole
Volume = 1L
Molarity =?
Molarity = mole /Volume
Molarity = 1.59/1
Molarity = 1.59mol/L
Answer:
Removal of Third Electron
Explanation:
a major jump is required to remove the third electron. In general, successive ionization energies always increase because each subsequent electron is being pulled away from an increasingly more positive ion.
Ionization energy increases from bottom to top within a group, and increases from left to right within a period.