It would be d bc when it’s at its lowest point it means not that much energy and that would be its lowest point which is D
Answer:
NUCLEAR ENERGY -----> MECHANICAL ENERGY -------> THERMAL ENERGY --------> ELECTRICAL ENERGY
Explanation:
In nuclear reactor, various energy transformations occur in order to generate electricity. Nuclear reactor converts the energy released from nuclear fission and the heat generated is removed from the reactor by a cooling system where steam is generated. The steam then drives a turbine which powers a generator to produce electricity.
A nuclear reactor is hence an equipment where nuclear chain reactions occur and control can be obtained. The nuclear reactor uses mostly uranium-235 and Plutonium-239. When these radioactive substances absorbs neutrons, they undergo nuclear fission causing the nucleus to split into two or more smaller compounds with the release of kinetic energy a form of mechanical energy, gamma radiations and others.The kinetic energy is then harnessed in the equipment as heat (thermal energy) which is received by a cooling system and steam is generated. The steam can then power the generator from which electricity is obtained (electrical energy).
So therefore, in a nuclear reactor, the nuclear energy is transformed to mechanical energy and then thermal energy which powers the generation of the electrical energy.
Answer:The endpoint does not correspond exactly to the equivalence point
At the endpoint, a change in a physical quantity associated with the equivalence point occurs.
At the equivalence point, the mole number of equivalents of reagent added is equal to the mole number of equivalents of analyte present.
Explanation:
The end point is always indicated by some physical property that changes such as colour. At the equivalence point, the mole number of equivalents of reagent added is equal to the mole number of equivalents of analyte present. The equivalence point cannot be physically observed but can be deduced after a titration curve is plotted.
Molarity is defined as number of moles of solute in 1 L of solution.
Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.
The balanced reaction will be as follows:
Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O
From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:
n=\frac{m}{M}
molar mass of Cu is 63.55 g/mol thus,
n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol
Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:
M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M
Thus, molarity of Cu^{2+} is 0.008 M.