First, let us find the corresponding amount of moles H₂ assuming ideal gas behavior.
PV = nRT
Solving for n,
n = PV/RT
n = (6.46 atm)(0.579 L)/(0.0821 L-atm/mol-K)(45 + 273 K)
n = 0.143 mol H₂
The stoichiometric calculations is as follows (MW for XeF₆ = 245.28 g/mol)
Mass XeF₆ = (0.143 mol H₂)(1 mol XeF₆/3 mol H₂)(245.28 g/mol) = <em>11.69 g</em>
Answer:
Dust and smoke.
Explanation:
Dust and smoke are two different particles present in the air. Dust and smoke are different from one another due to their origin. Smoke formed from burning of materials while dust refers to the soil particles lifted by the wind due to their light weight. Dust and smoke are similar to each other due to their small in size, infinite number means uncountable and light weight.
Answer:
Gd → Gd⁺ + 1e⁻, Gd⁺ → Gd⁺² + 1e⁻, Gd⁺² → Gd⁺³ + 1e⁻
Explanation:
The ionization energy is the energy necessary to remove one electron of the atom, transforming it in a cation. The first ionization energy is the energy necessary to remove the first electron, the second energy, to remove the second electron, and then successively.
Thus, for gadolinium (Gd)
Fisrt ionization:
Gd → Gd⁺ + 1e⁻
Second ionization:
Gd⁺ → Gd⁺² + 1e⁻
Third ionization:
Gd⁺² → Gd⁺³ + 1e⁻
In order to see which species has the strongest dispersion forces, you need to calculate their molar mass, because the higher the molar mass, the stronger the dispersion forces.
Since E. C8H18 has the highest molar mass, its dispersion forces are also the strongest ones.
The correct answer is ClO, ClO3-, ClO- and ClO4-
Kossel and Lewis in 1916 developed an important theory of chemical combination between atoms known as electronic theory of chemical bonding. According to this, atoms can combine either by transfer of valence electrons from one atom to another (gaining or losing) or by sharing of valence electron in order to have an octet( 8 electron) in their shells. This is known as octet rule.
In ClO2-, oxygen contains 8 electrons in its valence shell and oxygen will share one electron with chlorine to complete the octet of Cl. In other four, we can clearly see that there are more or less than 8 electrons in the outer shell of oxygen so we can clearly say that ClO, ClO3-, ClO- and ClO4- are disobeying the octet rule.