Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
B. 1922 m³
F. 612 π m³
hope this helps
1. I think you chose the right answer, the equation has the states of the reactants and products.
2. I think you chose the right answer.
3. I think you also chose the right answer. Assuming that the Hrxn is written as kJ per mol CH4
4. Heat of solution is the enthalpy change associated with dissolving a solute in a solvent. I think the first choice is the right one.
5. I think you chose the right answer.
Answer:
There were 0.00735 moles Pb^2+ in the solution
Explanation:
Step 1: Data given
Volume of the KI solution = 73.5 mL = 0.0735 L
Molarity of the KI solution = 0.200 M
Step 2: The balanced equation
2KI + Pb2+ → PbI2 + 2K+
Step 3: Calculate moles KI
moles = Molarity * volume
moles KI = 0.200M * 0.0735L = 0.0147 moles KI
Ste p 4: Calculate moles Pb^2+
For 2 moles KI we need 1 mol Pb^2+ to produce 1 mol PbI2 and 2 moles K+
For 0.0147 moles KI we need 0.0147 / 2 = 0.00735 moles Pb^2+
There were 0.00735 moles Pb^2+ in the solution