a.
Acids react with bases and give salt and water and the products.
Hence, HCl reacts with NaOH and gives NaCl salt and H₂O as the products. The reaction is,
HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
To balance the reaction equation, both sides hould have same number of elements.
Left hand side, Right hand side,
H atoms = 2 H atoms = 2
Cl atoms = 1 Cl atoms = 1
Na atoms = 1 Na atoms = 1
O atoms = 1 O atoms = 1
Hence, the reaction equation is already balanced.
b.
Molarity (M)= moles of solute (mol) / Volume of the solution (L)
HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
Molarity of NaOH = <span>0.13 M
</span>Volume of NaOH added = <span>43.7 mL
Hence, moles of NaOH added = 0.13 M x 43.7 x 10</span>⁻³ L
= 5.681 x 10⁻³ mol
Stoichiometric ratio between NaOH and HCl is 1 : 1
Hence, moles of HCl = moles of NaOH
= 5.681 x 10⁻³ mol
5.681 x 10⁻³ mol of HCl was in <span>26.9 mL.
Hence, molarity of HCl = </span>5.681 x 10⁻³ mol / 26.9 x 10⁻³ L
= 0.21 M
Actual question from source:-
A 3.96x10-4 M solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000 cm cuvette. A blank had an absorbance of 0.029. The absorbance of an unknown solution of compound A was 0.375. Find the concentration of A in the unknown.
Answer:
Molar absorptivity of compound A = 
Explanation:
According to the Lambert's Beer law:-
Where, A is the absorbance
l is the path length
is the molar absorptivity
c is the concentration.
Given that:-
c = 
Path length = 1.000 cm
Absorbance observed = 0.624
Absorbance blank = 0.029
A = 0.624 - 0.029 = 0.595
So, applying the values in the Lambert Beer's law as shown below:-

<u>Molar absorptivity of compound A =
</u>
Given mass of tungsten, W = 415 g
Molar mass of tungsten, W = 183.85 g/mol
Calculating moles of tungsten from mass and molar mass:

Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it
The Options are as follow,
<span> (1) CaCl</span>₂<span> (s) (3) CH</span>₃<span>OH (l)</span>
<span> (2) C</span>₂<span>H</span>₆<span> (g) (4) Cal</span>₂<span> (aq)</span>
Answer:
Option-1 is the correct answer.
Explanation:
As we know crystal formation is the property of solids. Therefore, in given options we are given with four different states of matter.
Option A, CaCl₂ is in a solid state , so it can exist in crystal form.
Option 2, C₂H₆ (Ethane) is in gas form, so it cannot form crystals.
Option 3, CH₃OH (Methanol) is present in liquid form, so it fails to form crystals.
Option 4, CaI₂, it is dissolved in water, Hence, it is in aqueous state, Therefore it also lacks crystal structure.