Answer:
ΔH = -976.5 kJ
Explanation:
For the reaction given, there are 2 moles of benzene (C6H6). The heat of this reaction is -6278 kJ, which means that the combustion of 2 moles of benzene will lose 6278 kJ of heat. It is an exothermic reaction.
The value of ΔH, the enthalpy, is a way of measurement of the heat, and it depends on the quantity of the matter (number of moles).
So, 24.3 g of benzene has :
n = mass/ molar mass
n = 24.3/78.11
n = 0.311 moles
2 moles ------------ -6278 kJ
0.311 moles ----------- x
By a simple direct three rule:
2x = -1953.08
x = -976.5 kJ
Since Kw= [H⁺][OH⁻], and the concentration of both substances are the same, the equation is now Kw=[H⁺]²
So,
3.31x10⁻¹³ = [H⁺]²
Take the square root= 5.75x10⁻⁷
Then take the negative log to find the pH:
-log(5.75x10⁻⁷) = 6.25
Answer:
Q= 245 =2.5 * 10^2
Explanation:
ΔG = ΔGº + RTLnQ, so also ΔGº= - RTLnK
R= 8,314 J/molK, T=298K
ΔGº= - RTLnK = - 6659.3 J/mol = - 6.7 KJ/mol
ΔG = ΔGº + RTLnQ → -20.5KJ/mol = - 6.7 KJ/mol + 2.5KJ/mol* LnQ
→ 5.5 = LnQ → Q= 245 =2.5 * 10^2
Answer
- continuous removal of PH3
- adding more of P into the system
Explanation:
In the reaction P4(g)+6H2(g) ⇌ 4PH3(g);
- The effect of temperature on equilibrium has to do with the heat of reaction. Recall that for an endothermic reaction, heat is absorbed in the reaction, and the value of ΔH is positive. Thus, for an endothermic reaction, we can picture heat as being a reactant:
heat+A⇌BΔH=+
- Since the reaction is endothermic reaction, heat is a absorbed. Decreasing the temperature will shift the equilibrium to the left, while increasing the temperature will shift the equilibrium to the right forming more of PH3.
- According to Le Chatelier’s principle, adding additional reactant to a system will shift the equilibrium to the right, towards the side of the products. In the same Way, reducing the concentration of the product will also shift equilibrium to the right continually forming PH3 as it is removed.
Answer:

Explanation:
Hello,
Considering the reaction:

The molar masses of chlorine and chloric acid are:

Now, we develop the stoichiometric relationship to find the mass of chloric acid, considering the molar ratio 3:1 between chlorine and chloric acid, as follows:

Best regards.