When we can get Pka for K2HPO4 =6.86 so we can determine the Ka :
when Pka = - ㏒ Ka
6.86 = -㏒ Ka
∴Ka = 1.38 x 10^-7
by using ICE table:
H2PO4- → H+ + HPO4
initial 0.4 m 0 0
change -X +X +X
Equ (0.4-X) X X
when Ka = [H+][HPO4] / [H2PO4-]
by substitution:
1.38 X 10^-7 = X^2 / (0.4-X) by solving for X
∴X = 2.3x 10^-4
∴[H+] = X = 2.3 x 10^-4
∴PH = -㏒[H+]
= -㏒ (2.3 x 10^-4)
∴PH = 3.6
Answer:
Kinetic energy of boy just before hitting the ground is
1000 J.
Speed of boy just before hitting the ground is 7.67 m/s
or 17.16 mi/hr.
Explanation:
Given that:
Mass of boy = 75lb = 34 kg
Height, h = 10ft = 3m
To find:
Kinetic energy of boy when he hits the ground.
<em>As per law of conservation of energy The potential energy gets converted to kinetic energy.</em>
<em></em>
<em></em>
<em> </em>Kinetic energy at the time boy hits the ground = Initial potential energy of the boy when he was at the Height 'h'
The formula for potential energy is given as:

Where m is the mass
g is the acceleration due to gravity, g = 9.8 
h is the height of object
Putting all the values:
PE = 
Hence, Kinetic energy is
1000 J.
Formula for Kinetic energy is:

where m is the mass and
v is the speed
Putting the values and finding v:

Given that:
1 m = 1.094 yd and 1 mi = 1760 yd

Converting 7.67 m/s to miles/hour:

The atom has only one isotope which means 100 % of same atom is present in nature. The atomic mass of an element is the number of times an atom of that element is heavier than an atom of carbon taken as 12. Mass of one atom of that isotope is 9.123 ✕ 10⁻²³ g, so mass of one mole of atom that is Avogadro's number of atom is 6.023 X 10²³ X 9.123 X 10⁻²³ g=54.94 g = 55 g (approximate).
So, the atom having atomic mass 55 will be Cesium (Cs). Only one isotope of Cesium is stable in nature.
Light acts as a wave so when you burn a certain element it generates a specific wavelength which represents a specific color light. ^-^
Answer:
A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate
Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.
For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.
Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.
Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.