Answer:
i believe this is a chemical or physical question? well your answer to that is no the element does not change because the gold is still gold it is still physical because you have just cut it into piece it is still gold
Explanation:
lmk if it was helpful :/
Answer:
that looks pretty and also well NGC 1427A has no general shape, so it is an irregular galaxy. U has a bulge in the center and arms, so it is a spiral galaxy. They are similar in the both certain plenty of dust and gas. Both also have active star-forming sites.
Ok so this is what we know :
2KClO3 -> 2KCl + 3O2 (Always check if equation is balanced - in this case it is)
4.26moles
So we know that we have 4.26 moles of oxygen (O2). Now lets look at the ratio between KClO3 and O2.
We see that the ratio is 2:3 meaning that we need 2KClO3 in order to produce 3O2.
Therefore divide 4.26 by 3 and then multiply by 2.
4.26/3 = 1.42
1.42 * 2 = 2.84
Now we know that the molarity of KClO3 is 2.84 moles.
Multiply by R.M.M to find how many grams of KClO3 we have.
R.M.M of KClO3
K- 39
Cl- 35.5
3O- 3 * 16 -> 48
---------------------------
<span>122.5
</span>2.84 * 122.5 = 347.9 grams therefore the answer is (a)
348 grams needed of KClO3 to produce 4.26 moles of O2.
Hope this helps :).
<u>Answer:</u> The element represented by M is Strontium.
<u>Explanation:</u>
Let us consider the molar mass of metal be 'x'.
The molar mass of MO will be = Molar mass of oxygen + Molar mass of metal = (16 + x)g/mol
It is given in the question that 15.44% of oxygen is present in metal oxide. So, the equation becomes:

The metal atom having molar mass as 87.62/mol is Strontium.
Hence, the element represented by M is Strontium.
Answer:
ΔG°rxn = -72.9 kJ
Explanation:
Let's consider the following reaction.
HCN(g) + 2 H₂(g) → CH₃NH₂(g)
We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression:
ΔG°rxn = ΔH° - T.ΔS°
where,
ΔH° is the standard enthalpy of the reaction
T is the absolute temperature
ΔS° is the standard entropy of the reaction
ΔG°rxn = -158.0 KJ - 387 K × (-219.9 × 10⁻³ J/K)
ΔG°rxn = -72.9 kJ