Hello!
To solve this problem we are going to use the
Henderson-Hasselbach equation and clear for the molar ratio. Keep in mind that we need the value for Acetic Acid's pKa, which can be found in tables and is
4,76:
![pH=pKa + log ( \frac{[CH_3COONa]}{[CH_3COOH]} )](https://tex.z-dn.net/?f=pH%3DpKa%20%2B%20log%20%28%20%5Cfrac%7B%5BCH_3COONa%5D%7D%7B%5BCH_3COOH%5D%7D%20%29%20)
![\frac{[CH_3COOH]}{[CH_3COONa}= 10^{(pH-pKa)^{-1}}=10^{(4-4,76)^{-1}}=5,75](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BCH_3COOH%5D%7D%7B%5BCH_3COONa%7D%3D%2010%5E%7B%28pH-pKa%29%5E%7B-1%7D%7D%3D10%5E%7B%284-4%2C76%29%5E%7B-1%7D%7D%3D5%2C75%20)
So, the mole ratio of CH₃COOH to CH₃COONa is
5,75Have a nice day!
Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.
Answer:
1) potential energy of the bond.
2) Linear
3) The electrons are transferred from K to Cl.
4) ClF
5) Oxygen
6) Electrolysis
7) Double displacement
Explanation:
As two atoms approach each other in a bonding situation, the potential energy of the bond is minimized as the internuclear distance of the bonding atoms decreases.
BeH2 has two electron domains and the central beryllium atom is sp2 hybridized. According to valence shell electron pair repulsion theory. A molecule having two regions of electron density will lead to a linear molecule.
KCl is an ionic compound hence there is a transfer of electrons from K(metal) to Cl(nonmetal).
ClF has partial charges because it contains a polar covalent bond. The partial charges arise from the dipole within the molecule. LiF is a pure ionic compound formed by transfer of electrons from Li to F. The species possess full and not partial charges.
When an oxygen atom bonds with another oxygen atom, what has been formed is a homonuclear covalent bond. Since the electro negativity of the both atoms is exactly the same, a pure covalent bond is formed. Recall that polar covalent bonds are formed when there is a significant electro negativity difference between the bonding atoms.
When direct current is passed through certain salt solutions during electrolysis, gases may be evolved and collected at the appropriate electrodes.
A double-replacement reaction is a reaction in which the cations and anions present in two different ionic compounds that are reacting together exchange their positions to form two new compounds on the product side. For instance, look at the reaction shown in question 7 as a typical example of this;
AgNO3 (s) + NaCl (s) → AgCl (s) + NaNO3 (s).
This is an incomplete question, the table is attached below.
Answer : The correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.
Explanation :
As we know that the intermolecular force of attraction play an important role in the interaction of solute-solute, solute-solvent and solvent solvent solution.
In the solution A, the solute-solute and solvent-solvent interactions are weak. So, their solute-solvent interaction will be strong. That means, the solution will be more exothermic.
In the solution C, the solute-solute and solvent-solvent interactions are strong. So, their solute-solvent interaction will be weak. That means, the solution will be more endothermic.
Thus, the correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.