Answer:
The balanced equation tells us that 1 mole of Zn will produce 1 mole of H2.
1.566 g Zn x (1 mole Zn / 65.38 g Zn) = 0.02395 moles Zn
0.02395 moles Zn x (1 mole H2 / 1 mole Zn) = 0.02395 moles H2 produced
Now use the ideal gas law to find the volume V.
P = 733 mmHg x (1 atm / 760 atm) = 0.964 atm
T = 21 C + 273 = 294 K
PV = nRT
V = nRT/ P = (0.02395 moles H2)(0.0821 L atm / K mole)(294 K) / (0.964 atm) = 0.600 L
Answer:
mass = 58.944 g
Explanation:
Given data:
Number of moles of SO₂ = 0.921 mol
Mass of SO₂ = ?
Solution:
Formula:
Number of moles = mass/ molar mass
First of all we will calculate the molar mass.
SO₂ = 32 + 16×2 = 64 g/mol
Now we will put the values in formula.
Number of moles = mass/ molar mass
0.921 mol = mass /64 g/mol
mass = 0.921 mol × 64 g/mol
mass = 58.944 g
Answer:
Trigonal pyramid molecules (three identical bonds)
Explanation:
In trigonal pyramidal molecule like molecule of ammonia , the vector some of intra- molecular dipole moment is not zero because the bonds are not symmetrically oriented . In other molecules , bonds are symmetrically oriented in space so the vector sum of all the internal dipole moment vectors cancel each other to make total dipole moment zero.
The answer is oxygen. (02)
When we can get the Kinetic energy from this formula KE= 1/2 M V^2and we can get the potential energy from this formula PE = M g H
we can set that the kinetic energy at the bottom of the fall equals the potential energy at the top so, KE = PE
1/2 MV^2 = M g H
1/2 V^2 = g H
when V is the velocity, g is an acceleration of gravitational force (9.8 m^2/s) and H is the height of the fall (8 m).
∴ v^2 = 2 * 9.8 * 8 = 156.8
∴ v= √156.8 = 12.5 m/s