Answer:
The snow gains heat to melt (endothermic), then the water releases heat to freeze (exothermic). ... Beaker becomes hot because the reaction is pushing heat out from itself onto .... solidification (ΔHsolidification) when 10.00kJ of energy are lost as 30.00g of water.
Explanation:
When there are equal number of H+ and OH- ions, the pH of water is 7.
0.53 x 200ml = 106 ml of the pH 9.0 buffer + 94 ml of the pH 10 buffer gives the desired solution
<span> </span>
Answer:
pH 9,8 is likely to work best for this separation
Explanation:
Ion exchange chromatography is a chemical process where molecules are separated by affinity to an ion exchange resin. To separate different aminoacids you must use the isoelectric point (That is the pH where the aminoacid will be in its neutral form).
For lysine, PI is:
9,8
For arginine:
10,75
At pH = 9,8 lysine will be in its neutral form and will not be retain in the column but arginine will be in +1 charge being retained by the ion exchange resin.
Thus, <em>pH 9,8 is likely to work best for this separation</em>
<em></em>
I hope it helps!
Answer:
296.1 day.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(74.0 days) = 9.365 x 10⁻³ day⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 9.365 x 10⁻³ day⁻¹).
t is the time of the reaction (t = ??? day).
a is the initial concentration of Ir-192 (a = 560.0 dpm).
(a-x) is the remaining concentration of Ir-192 (a -x = 35.0 dpm).
<em>∴ kt = lna/(a-x)</em>
(9.365 x 10⁻³ day⁻¹)(t) = ln(560.0 dpm)/(35.0 dpm).
(9.365 x 10⁻³ day⁻¹)(t) = 2.773.
<em>∴ t </em>= (2.773)/(9.365 x 10⁻³ day⁻¹) =<em> 296.1 day.</em>