answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
1 year ago
11

Suppose you measure the absorbance of a yellow dye solution in a 1.00 cm cuvette. The absorbance of the solution at 427 nm is 0.

20. If the molar absorptivity of yellow dye at 427 nm is 27400 M–1cm–1, what is the concentration of the solution?
Chemistry
1 answer:
Dimas [21]1 year ago
4 0

Answer:

The concentration of the solution, C=7.2992\times 10^{-6} M

Explanation:

The absorbance of a solution can be calculated by Beer-Lambert's law as:

A=\varepsilon Cl

Where,  

A is the absorbance  of the solution

ɛ is the molar absorption coefficient (L.mol^{-1}.cm^{-1})

C is the concentration (mol^{-1}.L^{-1})

l is the path length of the cell in which sample is taken (cm)

Given,

A = 0.20

ɛ = 27400 M^{-1}.cm^{-1}

l = 1 cm

Applying in the above formula for the calculation of concentration as:

A=\varepsilon Cl

0.20= 27400\times C\times 1

C = \frac{0.20}{27400\times 1} M

So , concentration is:

C=7.2992\times 10^{-6} M

You might be interested in
Consider the reaction between nis2 and o2: 2nis2(s)+5o2(g)→2nio(s)+4so2(g) when 11.2 g of nis2 are allowed to react with 5.43 g
stellarik [79]
M(NiS₂) = 11.2 g.
n(NiS₂) = m(NiS₂) ÷ M(NiS₂).
n(NiS₂) = 11.2 g ÷ 122.8 g/mol.
n(NiS₂) = 0.091 mol.
m(O₂) = 5.43 g.
n(O₂) = 5.43 g ÷ 32 g/mol.
n(O₂) = 0.17 mol; limiting reactant.
From chemical reaction: n(NiS₂) : n(O₂) = 2 : 5.
0.091 mol : n(O₂) = 2 : 5.
n(O₂) = 0.2275 mol, not enough.
n(NiO) = 4.89 g .
n(O₂) : n(NiS) = 5 : 2.
n(NiS) = 0.068 mol.
m(NiS) = 0.068 mol · 74.7 g/mol = 5.08 g.
percent yield = 4.89 g / 5.08 g · 100% = 96.2%.


6 0
1 year ago
Draw the best lewis structure for bro4- and determine the formal charge on bromine
Svetach [21]

Answer :

Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule. The electrons are represented by dot.

The given molecule is, perbromate ion.

Bromine has '7' valence electrons and oxygen has '6' valence electron.

Therefore, the total number of valence electrons in perbromate ion, BrO_4^- = 7 + 4(6) + 1 = 32

According to Lewis-dot structure, there are 14 number of bonding electrons and 18 number of non-bonding electrons.

Formula for formal charge :

\text{Formal charge}=\text{Valence electrons}-\text{Non-bonding electrons}-\frac{\text{Bonding electrons}}{2}

\text{Formal charge on }Br=7-0-\frac{14}{2}=0

The Lewis-dot structure of perbromate ion is shown below.

7 0
2 years ago
Read 2 more answers
This same chemistry student has a weight of 155 lbs. What is the student’s weight in
Virty [35]

Answer:

the same chemistry student has a weight of 155lbs what is the student weight in grams? (16 oz= 1 lb, 1 oz= 28.34g)

Explanation:1 lb = 16oz, so multiply your pounds by 16 to get you ounces of the student, then multiply by 28.34 to get grams

155 X 16 X 28.34 = 70283.2

8 0
1 year ago
Read 2 more answers
For which of the following aqueous solutions would one expect to have the largest van’t Hoff factor (i)? a. 0.050 m NaCl b. 0.50
ira [324]

Answer:

The van't hoff factor of 0.500m K₂SO₄ will be highest.

Explanation:

Van't Hoff factor was introduced for better understanding of colligative property of a solution.

By definition it is the ratio of actual number of particles or ions or associated molecules formed when a solute is dissolved to the number of particles expected from the mass dissolved.

a) For NaCl the van't Hoff factor is 2

b) For K₂SO₄ the van't Hoff factor is 3 [it will dissociate to give three ions one sulfate ion and two potassium ions]

Out of 0.500m and 0.050m K₂SO₄, the van't hoff factor of 0.500m K₂SO₄ will be more.

c) The van't Hoff factor for glucose is one as it is a non electrolyte and will not dissociate.

7 0
2 years ago
Calculate the concentration of all ions present in each of the following solutions of strong electrolytes.a. 0.0200 mol sodium p
JulsSmile [24]

<u>Answer:</u>

<u>For a:</u> The concentration of Na^+\text{ and }PO_4^{3-} ions in the solution are 6 M and 2 M respectively.

<u>For b:</u> The concentration of Ba^{2+}\text{ and }NO_3^{-} ions in the solution are 0.5 M and 1.0 M respectively.

<u>For c:</u> The concentration of K^{+}\text{ and }Cl^{-} ions in the solution are 0.051 M and 0.051 M respectively.

<u>For d:</u> The concentration of NH_4^{+}\text{ and }SO_4^{2-} ions in the solution are 1.34 M and 0.67 M respectively.

<u>Explanation:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}       ......(1)

Or,

\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}     ...(2)

For the given options:

  • <u>For a:</u>

The chemical formula of sodium phosphate is Na_3PO_4

Moles of sodium phosphate = 0.0200 moles

Volume of solution = 10.0 mL

Putting values in equation 1, we get:

\text{Molarity of the sodium phosphate}=\frac{0.0200\times 1000}{10.0}=2M

1 mole of sodium phosphate produces 3 moles of Na^+ ions and 1 mole of PO_4^{3-} ions

So, concentration of Na^+\text{ ions}=(3\times 2)=6M

Concentration of PO_4^{3-}\text{ ions}=(1\times 2)=2M

Hence, the concentration of Na^+\text{ and }PO_4^{3-} ions in the solution are 6 M and 2 M respectively.

  • <u>For b:</u>

The chemical formula of barium nitrate is Ba(NO_3)_2

Moles of barium nitrate = 0.300 moles

Volume of solution = 600.0 mL

Putting values in equation 1, we get:

\text{Molarity of the barium nitrate}=\frac{0.300\times 1000}{600.0}=0.5M

1 mole of barium nitrate produces 1 mole of Ba^{2+} ions and 2 mole of NO_3^{-} ions

So, concentration of Ba^{2+}\text{ ions}=(1\times 0.5)=0.5M

Concentration of NO_3^{-}\text{ ions}=(2\times 0.5)=1M

Hence, the concentration of Ba^{2+}\text{ and }NO_3^{-} ions in the solution are 0.5 M and 1.0 M respectively.

  • <u>For c:</u>

The chemical formula of potassium chloride is KCl

Given mass of potassium chloride = 1.00 g

Molar mass of potassium chloride = 39 g/mol

Volume of solution = 0.500 L

Putting values in equation 1, we get:

\text{Molarity of the potassium chloride}=\frac{1.00}{39\times 0.500}=0.051M

1 mole of potassium chloride produces 1 mole of K^{+} ions and 1 mole of Cl^{-} ions

So, concentration of K^{+}\text{ ions}=(1\times 0.051)=0.051M

Concentration of Cl^{-}\text{ ions}=(1\times 0.051)=0.051M

Hence, the concentration of K^{+}\text{ and }Cl^{-} ions in the solution are 0.051 M and 0.051 M respectively.

  • <u>For d:</u>

The chemical formula of ammonium sulfate is (NH_4)_2SO_4

Given mass of ammonium sulfate = 132 g

Molar mass of ammonium sulfate = 132 g/mol

Volume of solution = 1.50 L

Putting values in equation 1, we get:

\text{Molarity of the ammonium sulfate}=\frac{132}{132\times 1.50}=0.67M

1 mole of ammonium sulfate produces 2 moles of NH_4^{+} ions and 1 mole of SO_4^{2-} ions

So, concentration of NH_4^{+}\text{ ions}=(2\times 0.67)=1.34M

Concentration of SO_4^{2-}\text{ ions}=(1\times 0.67)=0.67M

Hence, the concentration of NH_4^{+}\text{ and }SO_4^{2-} ions in the solution are 1.34 M and 0.67 M respectively.

4 0
2 years ago
Other questions:
  • Which statement best describes why specific heat capacity is often more useful than heat capacity for scientists when comparing
    13·2 answers
  • Consider this equilibrium: N2(g) + 3H2(g) 2NH3(g) + energy. Certain conditions provide less than 10% yield of NH3 at equilibrium
    11·1 answer
  • One of the substances that give wet goats and dirty gym socks their characteristic odors is hexanoic acid, CH3CH2CH2CH2CH2CO2H,
    13·1 answer
  • H A and H B are both weak acids in water, and HA is a stronger acid than HB. Which of the following statements is correct? Selec
    14·1 answer
  • A quality control chemist at Dow Chemical tried to determine purity of NaOH using titration. He measured out 0.500 g NaOH sample
    5·1 answer
  • What type of intermediate is present in the sn2 reaction of cyanide with bromoethane?
    9·1 answer
  • 7. If you fill a balloon with 5.2 moles of gas and it creates a balloon with a volume of 23.5 liters, how many moles are in a ba
    12·1 answer
  • Which of the following is a class 3 surgical candidate
    10·1 answer
  • Explain why calcium combines in a different ratio to a fluoride ion versus an oxide ion.
    8·1 answer
  • The molar mass of an imaginary molecule is is 93.89 g/mol. Determine its density at STP.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!