answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
omeli [17]
2 years ago
14

A 50.0 mL sample of 0.600 M calcium hydroxide is mixed with 50.0 mL sample of 0.600 M hydrobromic acid in a Styrofoam cup. The t

emperature of both solutions before mixing was 23.00°C, and it rises to 26.00°C after the acid-base reaction. What is the enthalpy change for the reaction per mole of salt formed? Assume the densities of the solutions are all 1.08 g/mL and the specific heat capacities of the solutions are 4.18 J/gK. Use the correct sign.
Chemistry
1 answer:
TEA [102]2 years ago
6 0

Explanation:

The reaction equation will be as follows.

     Ca(OH)_{2}(aq) + 2HBr(aq) \rightarrow CaBr_{2}(aq) + 2H_{2}O(l)

So, according to this equation, 1 mole Ca(OH)_{2} = 2 mol HBr = 1 mol CaBr_{2}

Therefore, calculate the number of moles of calcium hydroxide as follows.

     No. of moles of Ca(OH)_{2} = V \times Molarity

                                    = 50 \times 0.6

                                    = 30 mmol

Similarly, calculate the number of moles of HBr as follows.

        No. of moles of HBr = M \times V

                                          = 50 \times 0.6

                                          = 30 mmol

This means that the limiting reactant is HBr.

So, no. of moles of CaBr_{2} = 30 \times \frac{1}{2}

                                                     = 15 mmol

Hence, calculate the amount of heat released as follows.

                Heat released in the reaction(q) = m \times s \times \Delta T

as,    m = mass of solution

and,             Density = \frac{mass}{volume}

or,                  mass = Density × Volume

                               = 1.08 g/ml \times (50 + 50) ml

                               = 108 g

where,    s = specific heat of solution = 4.18 j/g.k

and,        change in temperature \Delta T = (26 - 23)^{o}C

                                                                 = 3
^{o}C

Hence, the heat released will be as follows.

                   q = m \times s \times \Delta T

                        q = 108 \times 4.18 \times 3^{o}C

                           = 1354.32 joule

or,                        = 1.354 kJ       (as 1 kJ = 1000 J)    

Also,          \Delta H_{rxn} = \frac{-q}{n}

                              = \frac{-1.354}{15 \times 10^{-3}}

                              = -90.267 kJ/mol

Thus, we can conclude that the enthalpy change for the given reaction is -90.267 kJ/mol.

You might be interested in
Calculate the cell potential E at 25°C for the reaction 2 Al(s) + 3 Fe2+(aq) → 2 Al3+(aq) + 3 Fe(s) given that [Fe 2+] = 0.020 M
Elodia [21]

Answer:

1.18 V

Explanation:

The given cell is:

Al(s)/Al^{3+}(0.10M)||Fe^{2+}(0.020M)/Fe(s)

Half reactions for the given cell follows:

Oxidation half reaction: Al(s)\rightarrow Al^{3+}(0.10M)+2e^-;E^o_{Al^{3+}/Al}=-1.66V

Reduction half reaction: Fe^{2+}(0.020M)+2e^-\rightarrow Fe(s);E^o_{Fe^{2+}/Fe}=-0.45V

Multiply Oxidation half reaction by 2 and Reduction half reaction by 3

Net reaction: 2Al(s)+3Fe^{2+}(0.020M)\rightarrow 2Al^{3+}(0.10M)+3Fe(s)

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the E^o_{cell} of the reaction, we use the equation:

E^o_{cell}=E^o_{cathode}-E^o_{anode}

Putting values in above equation, we get:

E^o_{cell}=-0.45-(-1.66)=1.21V

To calculate the EMF of the cell, we use the Nernst equation, which is:

E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Al^{3+}]^2}{[Fe^{2+}]^3}

where,

E_{cell} = electrode potential of the cell = ?V

E^o_{cell} = standard electrode potential of the cell = +1.21 V

n = number of electrons exchanged = 6

Putting values in above equation, we get:

E_{cell}=1.21-\frac{0.059}{6}\times \log(\frac{0.10^2}{0.020^3})\\\\E_{cell}=1.18V

5 0
2 years ago
Analyze the example of this door knob wheel and axle.
bulgar [2K]

Answer:

28

Explanation:

Velocity ratio= Radius of wheel/radius of axle

Radius of wheel= 4.125 inches

Radius of axle= 0.125 inches

Velocity ratio = 4.125/0.125 = 33

Then;

Efficiency = mechanical advantage/velocity ratio × 100

Since the efficiency of the system = 85%

85 = mechanical advantage/33 × 100

Mechanical advantage = 85 × 33/100 = 28

4 0
2 years ago
The list below includes some of the properties of ammonia. Identify the physical properties in the list. Check all of the boxes
aleksklad [387]

Answer:

Gas at room temperature

Strong, unpleasant odor

Dissolves easily in water

Explanation:

Just did the assignment

6 0
2 years ago
Read 2 more answers
Which of the following are examples of plasma?
artcher [175]
The answers are "t<span>ails of comets, the ionosphere, and a neon sign." or options A, D, and E. Tails of comments are mainly made of plasma. Ice cubes are examples of a solid. A gas fire key word gas is example of a gas. The ionosphere is also mainly made of plasma. A neon sign uses plasma in order to work. A flashlight uses a light bulb which isn't a example of plasma therefore  thats a no.

Hope this helps!
</span>
4 0
2 years ago
Read 2 more answers
The pOH of a solution is 6.0. Which statement is correct? Use p O H equals negative logarithm StartBracket upper O upper H super
Katen [24]

Answer:

The pH of the solution is 8.

Explanation:

To which options are correct, let us determine the concentration of the hydroxide ion, [OH-] and the pH of the solution. This is illustrated below:

1. The concentration of the hydroxide ion, [OH-] can be obtained as follow:

pOH = –Log [OH-]

pOH = 6

6 = –Log [OH-]

–6 = Log [OH-]

[OH-] = Antilog (–6)

[OH-] = 1x10^–6 mol/L

2. The pH of the solution can be obtained as follow:

pH + pOH = 14

pOH = 6

pH + 6 = 14

pH = 14 – 6

pH = 8.

From the calculations made above,

[OH-] = 1x10^–6 mol/L

pH = 8.

Therefore, the correct answer is:

The pH of the solution is 8

3 0
2 years ago
Other questions:
  • Consider the reaction: 2clf3(g) + 2nh3(g) → n2(g) + 6hf(g) + cl2(g) when calculating the δh°rxn, why is the δhf° for n2 not impo
    9·1 answer
  • Calculate the maximum concentration (in m) of silver ions (ag+) in a solution that contains 0.025 m of co32-. the ksp of ag2co3
    7·1 answer
  • Which statements correctly describe the process of nuclear fusion?
    13·2 answers
  • Choose ALL TRUE statements about calorimetry from the choices below:
    10·1 answer
  • Question 4 (1 point)
    12·1 answer
  • During a laboratory experiment, 36.12 grams of Al2O3 was formed when O2 reacted with aluminum metal at 280.0 K and 1.4 atm. What
    11·1 answer
  • A balloon filled with 1.22 L of gas at 286 K is heated until the
    10·1 answer
  • Arrange these reactions according to increasing ΔS.
    12·1 answer
  • What volume in<br><br> L<br><br> of a 0.724 M Nal solution contains 0.405 mol of Nal ?
    10·1 answer
  • Identify a process that is NOT reversible. Identify a process that is NOT reversible. melting of snow baking of bread deposition
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!