Answer:
The final pressure of the gas mixture after the addition of the Ar gas is P₂= 2.25 atm
Explanation:
Using the ideal gas law
PV=nRT
if the Volume V = constant (rigid container) and assuming that the Ar added is at the same temperature as the gases that were in the container before the addition, the only way to increase P is by the number of moles n . Therefore
Inicial state ) P₁V=n₁RT
Final state ) P₂V=n₂RT
dividing both equations
P₂/P₁ = n₂/n₁ → P₂= P₁ * n₂/n₁
now we have to determine P₁ and n₂ /n₁.
For P₁ , we use the Dalton`s law , where p ar1 is the partial pressure of the argon initially and x ar1 is the initial molar fraction of argon (=0.5 since is equimolar mixture of 2 components)
p ar₁ = P₁ * x ar₁ → P₁ = p ar₁ / x ar₁ = 0.75 atm / 0.5 = 1.5 atm
n₁ = n ar₁ + n N₁ = n ar₁ + n ar₁ = 2 n ar₁
n₂ = n ar₂ + n N₂ = 2 n ar₁ + n ar₁ = 3 n ar₁
n₂ /n₁ = 3/2
therefore
P₂= P₁ * n₂/n₁ = 1.5 atm * 3/2 = 2.25 atm
P₂= 2.25 atm
Answer :
The correct answer is %IC = 10 % and bond is covalent bond with slight polarity.
<u>Percent Ionic Character :</u>
It is defined as percent of ionic character present in a polar covalent bond . The formula of % ionic character (%IC) is given as follows :

Where Xa = Electronegativity of A atom and Xb = Electronegativity of B atom
Given : Molecule is TiAl₃
Electronegativity of Ti = 2.0
Electronegativity of Al = 1.6 ( From image shared )
Plug the value in above formula :



Value of e⁻¹ = 0.90
Percent ionic character = 1 - 0.90 * 100
Percent Ionic character = 10 %
<u>Since the % IC is 10 % , which is very less comparatively , hence the bond is covalent and very less polar .</u>
The kinetic energy of the products is equal to the energy liberated which is 92.2 keV. But let's convert the unit keV to Joules. keV is kiloelectro volt. The conversion that we need is: 1.602×10⁻¹⁹ <span>joule = 1 eV
Kinetic energy = 92.2 keV*(1,000 eV/1 keV)*(</span>1.602×10⁻¹⁹ joule/1 eV) = 5.76×10²³ Joules
From kinetic energy, we can calculate the velocity of each He atom:
KE = 1/2*mv²
5.76×10²³ Joules = 1/2*(4)(v²)
v = 5.367×10¹¹ m/s
Answer : The mole fraction of nitrogen will be 0.4615.
Explanation : When nitrogen (
)and hydrogen (
)are mixed, the mole ratio becomes 1 : 1.5,
Now we know that (
) is acting as a limiting agent.
So at the time of when 0.4 moles of (
) is been formed it requires 0.4 moles of (
) and 3.4 moles of (
)
So, we find the the remaining (
) will be 0.6 and
(
) will be 0.3 mole present in mixture.
So, the mole fraction of (
) becomes = 0.6 / (0.6 + 0.4 + 0.3) Which becomes = 0.4615