Vanillin is the common name for 4-hydroxy-3-methoxy-benzaldehyde.
See attached figure for the structure.
Vanillin have 3 functional groups:
1) aldehyde group: R-HC=O, in which the carbon is double bonded to oxygen
2) phenolic hydroxide group: R-OH, were the hydroxyl group is bounded to a carbon from the benzene ring
3) ether group: R-O-R, were hydrogen is bounded through sigma bonds to carbons
Now for the hybridization we have:
The carbon atoms involved in the benzene ring and the red carbon atom (from the aldehyde group) have a <u>sp²</u> hybridization because they are involved in double bonds.
The carbon atom from the methoxy group (R-O-CH₃) and the blue oxygen's have a <u>sp³</u> hybridization because they are involved only in single bonds.
Answer:
E° = 0.65 V
Explanation:
Let's consider the following reductions and their respective standard reduction potentials.
Sn⁴⁺(aq) + 2 e⁻ → Sn²⁺(aq) E°red = 0.15 V
Ag⁺(aq) + e⁻ → Ag(s) E°red = 0.80 V
The reaction with the highest reduction potential will occur as a reduction while the other will occur as an oxidation. The corresponding half-reactions are:
Reduction (cathode): Ag⁺(aq) + e⁻ → Ag(s) E°red = 0.80 V
Oxidation (anode): Sn²⁺(aq) → Sn⁴⁺(aq) + 2 e⁻ E°red = 0.15 V
The overall cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an = 0.80 V - 0.15 V = 0.65 V
Answer:
The pressure will increase due ot expnasion of gasses in a closed sealed tube tube .
Explanation:
Ideal solutions obey Raoult's law, which states that:
P_i = x_i*(P_pure)_i
where
P_i is the partial pressure of component i above a solution
x_i is the mole fraction of component i in the solution
(P_pure)_i is the vapor pressure of pure component i
In this case,
P_benzene = 0.59 * 745 torr = 439.6 torr
P_toluene = (1-0.59) * 290 torr = 118.9 torr
The total vapor pressure above the solution is the sum of the vapor pressures of the individual components:
P_total = (439.6 + 118.9) torr = 558.5 torr
Assuming the gas phase also behaves ideally, the partial pressure of each gas in the vapor phase is proportional to its molar concentration, so the mole fraction of toluene in the vapor phase is:
118.9 torr/558.5 torr = 0.213
Answer:
Molarity = 1.93 mol.L⁻¹
Explanation:
Molarity is the unit of concentration used to specify the amount of solute in given amount of solution. It is expressed as,
Molarity = Moles / Volume of Solution ----- (1)
Data Given;
Mass = 11.3 g
Volume = 100 mL = 0.10 L
First calculate Moles for given mass as,
Moles = Mass / M.mass
Moles = 11.3 g / 58.44 g.mol⁻¹
Moles = 0.1933 mol
Now, putting value of Moles and Volume in eq. 1,
Molarity = 0.1933 mol ÷ 0.10 L
Molarity = 1.93 mol.L⁻¹