Answer: Option (6) is the correct answer.
Explanation:
Lattice energy is described as the energy released when formation of 1 mole of an ionic compound occurs due to the combination of its constituent ions.
Also, lattice energy is inversely proportional to the distance between the cation and anion. And, when we move down a group then there occurs an increase in the atomic radii of the atoms.
This means that smaller is the ionic distance between the cation and anion, more will be the lattice energy between the atoms.
Therefore, order from weakest to strongest lattice energy (most positive to most negative) for the given compounds is as follows.
barium chloride < strontium chloride < calcium chloride < magnesium chloride
Different wavelength are involved.
Explanation:
If magnesium burns with a bright white flame, one can conclude that different wavelengths accompany the electron transitions for the magnesium atom.
- When an atom burns, the electrons in it are excited.
- They give out characteristic light commensurate with their energy.
- A white light is made up of different combinations of wavelength of radiations.
- When we see a white light we can infer that different joined together in the emission observed.
Learn more:
Spectrum brainly.com/question/6255073
#learnwithBrainly
Answer:
ΔH=15000
J = 15KJ
Explanation:
In this exercise you have find the enthalpy of reaction this is the difference between enthalpy of reactans and products,
For the following equation
H2A(aq) + 2 BOH(aq) → B2A(aq) + 2 H2O(l)
We know that 0.20 moles of BOH reacted with excess amount of H2A solution and 1500. J
so,
(2mol/0,2mol)*1500J=15000J
for de reactions exothermics tha enthalpy is negative so:
ΔH=15000
J = 15KJ
The answer is Metallic bonds involve many valence electrons shared by many atoms, so the bonds can move around as the metal is pounded. The metallic bond structure of lead forms a cubic crystal structure and the atoms can roll over one another without breaking the metallic bonds. This is especially because the p orbital electrons of lead can be delocalized and the electrons can be shared with other lead ions in the cubic structure of lead.