<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
<h3>Answer:</h3>
Formal Charge on Nitrogen is "Zero".
<h3>Explanation:</h3>
Formal Charge on an atom in molecules is calculated using following formula;
Formal Charge = [# of Valence e⁻s] - [e⁻s in lone pairs + 1/2 # of Bonding e⁻s]
As shown in attached picture of Hydroxylamine, Nitrogen atom is containing two electrons in one lone pair of electrons and six electrons in three single bonds with two hydrogen and one oxygen atom respectively.
Hence,
Formal Charge = [5] - [2 + 6/2]
Formal Charge = [5] - [2 + 3]
Formal Charge = 5 - 5
Formal Charge = 0 (zero)
Hence, the formal charge on nitrogen atom in hydroxylamine is zero.
Answer:
A = 674.33mmHg
B = 0.385atm
Explanation:
Both question A and B requires the application of pressure law which states that the pressure of a fixed mass of gas is directly proportional to its temperature provided that volume is kept constant.
Mathematically,
P = kT, k = P / T
P1 / T1 = P2 / T2 = P3 / T3 =.......= Pn/Tn
A)
Data:
P1 = 799mmHg
T1 = 50°C = (50 + 273.15) = 323.15K
P2 = ?
T2 = 273.15K
P1 / T1 = P2 / T2
Solve for P2
P2 = (P1 × T2) / T1
P2 = (799 × 273.15) / 323.15
P2 = 674.37mmHg
The final pressure is 674.37mmHg
B)
P1 = 0.470atm
T1 = 60°C = (60 + 273.15)K = 333.15K
P2 = ?
T2 = 273.15K
P1 / T1 = P2 / T2
Solve for P2,
P2 = (P1 × T2) / T1
P2 = (0.470 × 273.15) / 333.15
P2 = 0.385atm
The final pressure is 0.385atm
Answer:
The correct answer is 0.300 * 10^23 ions.
Explanation:
Based on the given question, there is a need to find the number of chloride ions in the mentioned 6.8 grams of zinc chloride compound.
The moles of zinc chloride (ZnCl2) is,
= mass of zinc + 2 mass of chlorine
= 65.38 + 2 (35.45)
=65.38 + 70.90
= 136.28 grams (The molecular mass of zinc is 65.38 and the molecular mass of chlorine is 35.45)
Thus, 136.28 g of ZnCl2 contains 70.90 grams of chlorine
Therefore, 6.8 grams of ZnCl2 will comprise = (70.90/136.28) * 6.8
= 3.537 g of chlorine
70.90 g of Cl comprise 6.022*10^23 chlorine, thus, 3.537 g of Cl will comprise (6.022*10^23/70.90) * 3.537
= 0.300 * 10^23 ions of chlorine.
The answer is ................................ c