Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
Answer:
Possible lowest volume = 0.19 cm
Possible highest volume = 0.21 cm
Explanation:
given data
volumetric pipette uncertainty = 0.01 cm³
total volume = 0.20 cm³
solution
we will get here Possible lowest and highest volume that is express as
Possible lowest volume = total volume - uncertainty .....................1
Possible highest volume = total volume + uncertainty ....................2
put here value in both equation and we get
Possible lowest volume = 0.20 cm - 0.01 cm
Possible lowest volume = 0.19 cm
and
Possible highest volume = 0.20 cm + 0.01 cm
Possible highest volume = 0.21 cm
Answer:
*The model should show the carbon compounds enter as carbon dioxide
*The model should show the carbon compounds exit as 3-carbon molecules
Explanation:
In plants, carbon dioxide (CO2) enters the chloroplast through the stomata and diffuses into the stroma of the chloroplast—the site of the Calvin cycle reactions where sugar is synthesized. The reactions are named after the scientist who discovered them, and reference the fact that the reactions function as a cycle.
We are asked to calculate the number of moles in a given mass of a substance. To be able to calculate it, we need the molar mass of the substance. For (NH4)2Cr2O7, the molar mass would be <span>252.07 g/mol. We calculate as follows:
0.025 g </span>(NH4)2Cr2O7 ( 1 mol / 252.07 g ) = 0.0001 mol <span>(NH4)2Cr2O7
Hope this answers the question. Have a nice day.</span>