Concept:
<em><u>Latent Heat of Vaporization</u></em>: It is defined as the amount of heat required to change the state of mater without changing of its temperature.
From the given question, the temperature at the boiling point remained constant despite the continued addition of heat by the Bunsen burner. <em>Actually,</em> this amount of heat is used by water to break the intermolecular bonds between the water molecules in the form of latent heat that converts the liquid state of water into vapor state of water.
Hence, the correct option will be d.<u>The energy was used to break the intermolecular bonds between the water molecules. </u>
I'm certain it's "D"
...because it can't be "A" or "B" because solubility IS a property but to actually determine whether these two substances are the same or different we would need at least two-three properties (like boiling point or specific heat).
and it can't be "C" because the melting point is just simply irrelevant when comparing the solubility of two substances.
We are given with a compound, Methane (CH4), with a molar
mass of 0.893 mol sample. We are tasked to solve for it's corresponding mass in
g. We need to solve first the molecular weight of Methane, that is
C=12 g/mol
H=1g/mol
CH4= 12 g/mol +1(4) g/mol = 16 g/mol
With 0.893 mol sample, its corresponding mass is
g CH4= 0.893 mol x 16g/mol =14.288 g
Therefore, the mass of methane is 14.288 g
Answer:
D. 91.98K
Explanation:
The General Gas Law equation is given by,

From the question,
the initial pressure,

the initial volume,

the final temperature,

the final pressure,

the final volume,

Making

the subject of the expression, we obtain

By substitution,


Hence the initial temperature was 91.98 K
D. toxic chemical used to control pest population.