It can be made true by changing "cannot" to "can".
It will form a tetraamminezinc sulphate and a blue solution will be formed...the reaction should be carried out in a fume chamber because a poisonous substance will be released to the atmosphere
Answer:p-hydroxybenzaldehyde is stronger acid to phenol
para-cyanophenol is stronger acid to meta-cyanophenol
o-fluorophenol is stronger acid to p-fluorophenol.
Explanation:
The PKa tool relative to Ph are used to contrast the pairs.
The pKa of phenol is 10. The pKa of p-hydroxybenzaldehyde is 9.24
The pKa for meta-cyanophenol is 8.61 and the pKa for para-cyanophenol is 7.95.
The pKa value of o-fluorophenol is 8.7, while that of the p-fluorophenol is 9.9. It's obvious that the inductive effect is more dominant at ortho-position, which results in a more acidic nature
The pKa is the pH value at which a chemical species will accept or donate a proton. The lower the pKa, the stronger the acid and the greater the ability to donate a proton in aqueous solution.
Answer:
The air pressure in the ears increases
The volume of air in the ears increases
The change in volume causes discomfort
It takes time for the ears to dispell excess air past the ear drum.
Explanation:
As the plane engages in a steep incline into the atmosphere, the outside atmospheric pressure decreases with altitude. The air pressure in the ear, therefore, become greater than atmospheric pressure. The air volume in the ear therefore grows and pushes on the ear causing discomfort. As the air in the cabin pressurizes the discomfort eases away as pressure equalization is restored relative to the ear.
The k is the proportionality constant of the reaction. Graphically, this is the slope of the graph. Since the graph is linear, then there is only 1 value of k. To calculate this, choose two random points in the line. Suppose we use (0.15,10) and (0.30,20), calculate for the slope.
Slope = k = (10 - 20)/(0.15 - 0.30) = 66.67 mL CO₂/g CaCO₃