The weight in grams = 7.93 g
Given volume = 2.00
Given density = 0.242 g/
We need to find the Mass(weight) in grams.
To find the weight in grams we need to keep in mind that the volume and density must use the same volume unit for cancellation. So that the volume units will cancel out, leaving only the mass units.
The unit of given volume is
and unit of volume in density is
, so first we need to change the unit of volume from
to
so that the volume units will cancel out, leaving only the mass units.
1
= 16.39
(given conversion)

units get cancel out leaving the
unit.

Mass = Density X Volume.
Density = 0.242 g/
and Volume = 32.78 

Mass = 7.93 grams (g)
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
Answer:
Mg> H> Cu
Explanation:
We can see from the question that hydrochloric acid reacted with magnesium as follows;
Mg(s) + 2HCl(aq) ----> MgCl2(aq) + H2(g)
Copper does not react with HCl which means that copper is less reactive than hydrogen hence it can not displace hydrogen from a dilute acid solution.
The order of reactivity of the elements then is ; Mg> H> Cu
Answer:
C.12.3%. you need to use pv=nRT (ideal gas law)
The answer is Metallic bonds involve many valence electrons shared by many atoms, so the bonds can move around as the metal is pounded. The metallic bond structure of lead forms a cubic crystal structure and the atoms can roll over one another without breaking the metallic bonds. This is especially because the p orbital electrons of lead can be delocalized and the electrons can be shared with other lead ions in the cubic structure of lead.