Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
Answer:
The molar mass of the protein is 12982.8 g/mol.
Explanation:
The osmptic pressure is given by:
π=MRT
Where,
M: is molarity of the solution
R: the ideal gas constant (0.0821 L·atm/mol·K)
T: the temperature in kelvins
Hence, we look for molarity:

= =5.584×10⁻³mol/l
As we have 2 ml of solution, we can get the moles quantity:
Moles of protein: 5.584×10⁻³
×2ml=1.117×10⁻⁵mol
Finally, the moles quantity is the division between the mass of the protein and the molar mass of the protein, so:
Moles=Mass/Molar mass
Molar mass= Mass/Moles=
=12982.8 g/mol
Answer:
B) hyperbolic curve; saturated with substrate
Explanation:
Enzymatic kinetics studies the speed of enzyme catalyzed reactions. These studies provide direct information about the mechanism of the catalytic reaction and the specificity of the enzyme. The speed of a reaction catalyzed by an enzyme can be measured with relative ease, since in many cases it is not necessary to purify or isolate the enzyme. The measurement is always carried out under the optimal conditions of pH, temperature, presence of cofactors, etc., and saturating substrate concentrations are used. Under these conditions, the reaction rate observed is the maximum speed (Vmax). The speed can be determined either by measuring the appearance of the products or the disappearance of the reagents.
Following the rate of appearance of product (or disappearance of the substrate) as a function of time, the so-called reaction progress curve is obtained, or simply, the reaction kinetics. This curve is represented by a hyperbolic curve
Answer:
No, Stephanie is incorrect. Formation of petroleum cannot take place under the presence of oxygen.
Explanation:
Since, the petroleum is fossil product. Fossil fuel are formed under high pressure and temperature with absence of oxygen for longer period. so the way she is performing is completely incorrect. With the presence of oxygen in no way petroleum will be formed. The temperature and pressure should be in different combination for the formation of the petroleum. Along with the layers of sediments to maintain the pressure is required.
Molarity is expressed as
the number of moles of solute per volume of the solution. For example, we are
given a solution of 2M NaOH this describes a solution that has 2 moles of NaOH
per 1 L volume of the solution. We calculate as follows:
0.115 M = n mol KBr / .55 L solution
n = 0.06325 mol KBr
mass = 0.06325 mol KBr (119 g / mol) = 7.53 g KBr