Answer:
k = ![\frac{[HOCl]^2}{[Cl]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BCl%5D%5E2%7D)
Explanation:
The equilibrium-constant expression is defined as the ratio of the concentration of products over concentration of reactants. Each concentration is raised to the power of their coefficient.
Also, pure solid and liquids are not included in the equilibrium-constant expression because they don't affect the concentration of chemicals in the equilibrium
The global reaction is:
2 HgO (s) + H₂O (l) +2 Cl₂ (g) ⇌ 2 HOCl (aq) + HgO⋅HgCl₂ (s)
Thus, equilibrium-constant expression is:
<em>k =
</em>
You don't include HgO nor HgO⋅HgCl₂ because are pure solids nor water because is pure liquid.
I hope it helps!
To determine the state of saturation of the solution, we calculate the mass of solute per mass of water for the given amounts and compare this value to the solubility. If the value is less than the solubility, then the solution is unsaturated. If it is greater than solubility, then it is supersaturated. If it is equal to the solubility, then it is saturated.
mass solute / mass water = 39.0 grams K2SO4 / 225 grams H2O = 0.173 g K2SO4/ g H2O
solubility = 15 g /100 g = .15 g/g
Therefore, the solution is supersaturated. When it is shaken, some of the solute would precipitate out.
mass of solute soluble to water = .15 g K2SO4/ g water ( 225 g water ) = 33.75 g K2SO4
mass of K2SO4 that would crystallize = 39.0 - 33.75 = 5.25 g K2SO4
Each of the Isotopic mass * its Abundance Sum together divide by 100.
(179.946706*0.12 + 181.948206*26.5 + 182.9502245*14.3 + 183.9509326*30.64 + 185.954362*28.43 ) / 100
You get 183.84 (5s.f. ) or (183.8417786)
_award brainliest if helped!