answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
1 year ago
9

B5H9(l) is a colorless liquid that will explode when exposed to oxygen. How much heat is released when 0.211 mol of B5H9 reacts

with excess oxygen where the products are B2O3(s) and H2O(l). The standard enthalpy of formation of B5H9(l) is 73.2 kJ/mol, the standard enthalpy of formation of B2O3(s) is -1272 kJ/mol and that of H2O(l) is -285.4 kJ/mol. Express your answer in kJ.
Chemistry
2 answers:
n200080 [17]1 year ago
8 0

Answer:

Heat realesed is - 2192.7 kJ

Explanation:

First lets have the chemical equation balanced, and then solve the question based on the fact that the enthalpy change for a reaction is the sum of the enthalpies of formation of products minus reactants.

    B₅H₉ (l) +     O₂ (g) ⇒       B₂O₃ (s) +      H₂O(l)

B atoms we have 5 reactants and 2 products, so the common mltiple is 10 and we have

  2  B₅H₉ (l) +     O₂ (g) ⇒      5 B₂O₃ (s) +      H₂O(l)

Now balance H  by multiplying by 9 the H₂O

  2  B₅H₉ (l) +     O₂ (g) ⇒      5 B₂O₃ (s) +    9 H₂O(l)

Finally, balance the O since we have 24 in products by multiplying by 12 the

O₂ ,

        2  B₅H₉ (l) +  12 O₂ (g) ⇒      5 B₂O₃ (s) +    9 H₂O

ΔHrxn = 5 x ΔHºf B₂O₃  + 9 x   ΔHºf H₂O  -  ( 2 x ΔHºf  B₅H₉ + 12 x  ΔHºf O₂  )

We have all the  ΔHºf s except oxygen but remember the enthalpy of formation of a pure element in its standard estate is cero.

ΔHrxn =  5 mol x ( -1272 kJ/mol )+ 9 mol  x ( -285.4 kJ/mol )   - (  2mol x 732 kJ/mol )

= -8928.6 kJ - 1464  kJ = -10,392 kJ

Now this enthalpy change was based in 2 mol  reacted according to the balanced equation, so for 0.211 mol of  B₅H₉  we will have:

-10,392 kJ/ 2 mol B₅H₉   x 0.211 mol B₅H₉ = - 2192.7 kJ

rewona [7]1 year ago
7 0

Answer:

ΔH=-957.41 kJ

Explanation:

The chemical equation is:

B₅H₉ (l) +     O₂ (g) ⇒       B₂O₃ (s) +      H₂O(l)

The law of conservation of matter states that since no atom can be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.

Then, you must balance the chemical equation. For that, you must first look at the subscripts next to each atom to find the number of atoms in the equation. If the same atom appears in more than one molecule, you must add its amounts

The coefficients located in front of each molecule indicate the amount of each molecule for the reaction. This coefficient can be modified to balance the equation, just as you should never alter the subscripts.

By multiplying the coefficient mentioned by the subscript, you get the amount of each element present in the reaction.  

So in first place you balance B

2 B₅H₉ (l) +     O₂ (g) ⇒   5 B₂O₃ (s) +      H₂O(l)

Then you balance H

2 B₅H₉ (l) +     O₂ (g) ⇒   5 B₂O₃ (s) +    9  H₂O(l)

Finally you balance O

<em>2 B₅H₉ (l) +    12 O₂ (g) ⇒   5 B₂O₃ (s) +    9  H₂O(l)</em>

Then

Left side: 2*5=10 boron (B), 2*9=18 hydrogen. and 12*2=24 oxygen

Right side: 5*2=10 boron (B), 9*2=18 hydrogen. and 5*3 + 9*1=24 oxygen

Since you have the same amount of elements on each side of the equation, the equation is balanced.

You want to calculate the ∆H (heat of reaction) of the combustion reaction, that is, the heat that accompanies the entire reaction. For that <u><em>you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (quantity of molecules of each compound that participates in the reaction) and finally subtract them: </em></u>

<u><em>Enthalpy of combustion = ΔH = ∑Hproducts - ∑Hreactants </em></u>

Knowing that:

  • Heat of formation of B₅H₉ = 73.2 kJ/mol
  • Heat of formation of water = -285.4 kJ/mol
  • Heat of formation of B₂O₃ = -1,272 kJ/mol

For the formation of one mole of a pure element the heat of formation is 0, in this case we have as a pure compound the oxygen O₂.

Then:

ΔH= 9 mol*(-285.4 kJ/mol) + 5 mol* (-1,272 kJ/mol) - [2 mol* 73.2 kJ/mol + 12 mol* 0 kJ/mol]

ΔH= -9,075 kJ

If you observe the previous balanced reaction, you can see that 2 moles of B₅H₉ (l) are necessary. And the calculation of the heat of reaction previously carried out is based on this reaction. This ultimately means that the energy that would result in the reaction of 2 moles of B₅H₉ (l) is -9,075 kJ.

To determine the heat that is released when 0.211 mol of B₅H₉ (l) react with excess oxygen, a rule of three is applied as follows: if 2 moles of B₅H₉ (l) produces a heat ΔH of -9,075 kJ, when reacting 0.211 mol of B₅H l (l) how much heat ΔH is released?

ΔH=\frac{0.211 moles*(-9075)kJ}{2 moles}

<u><em>ΔH=-957.41 kJ</em></u>

You might be interested in
A gas that has a volume of 28 liters, a temperature of 45C, And an unknown pressure has its volume increased to 34 liters and it
patriot [66]

Answer:

P1 = 2.5ATM

Explanation:

V1 = 28L

T1 = 45°C = (45 + 273.15)K = 318.15K

V2 = 34L

T2 = 35°C = (35 + 273.15)K = 308.15K

P1 = ?

P2 = 2ATM

applying combined gas equation,

P1V1 / T1 = P2V2 / T2

P1*V1*T2 = P2*V2*T1

Solving for P1

P1 = P2*V2*T1 / V1*T2

P1 = (2.0 * 34 * 318.15) / (28 * 308.15)

P1 = 21634.2 / 8628.2

P1 = 2.5ATM

The initial pressure was 2.5ATM

3 0
1 year ago
The incomplete table below shows selected characteristics of gas laws.
Elenna [48]

Explanation :

In the given case different law related to gas is given. The attached figure shows the required solution.

Boyle's law states that the pressure is inversely proportional to the volume of the gas i.e.

P\propto \dfrac{1}{V}

PV=k

k is a constant.

Charle's law states that the volume of directly proportional to the temperature of the gas.

V\propto T

V=kT

Combined gas law is the combination of the pressure, volume and the temperature of the gas i.e.

\dfrac{PV}{T}=k

Hence, this is the required solution.

6 0
2 years ago
Read 2 more answers
In a 0.01 M solution of HCl, Litmus will be
Nadya [2.5K]
In a 0.01 M solution of HCl, Litmus will be red. Litmus paper will turn into red in acidic conditions. Hydrochloric acid is an acid. Litmus is an indicator for acidity and alkalinity made from inchens.
6 0
2 years ago
Read 2 more answers
The Atomic Mass of Al is 26.98154 g/mol. Is it possible to have 5.0 × 10^-25 g of Al? Explain.
Lesechka [4]
<span>If a mole of aluminum weighs 26.98 grams, that means 1 atom of aluminum weighs = (26.98 g/mole) / (6.023 x 10^23 atoms/mole) = 4.479 x 10^-23 grams,

</span>so, it is not possible because 1 atom weighs that much we calculated which is <span>almost 100 times more than the amount you mentioned</span>

8 0
1 year ago
What is the hybridization of the central atom in each of the following? 1. Beryllium chloride 2. Nitrogen dioxide 3. Carbon tetr
Lina20 [59]

Answer :

(1) The hybridization of central atom beryllium in BeCl_2  is, sp

(2) The hybridization of central atom nitrogen in NO_2  is, sp^2

(3) The hybridization of central atom carbon in CCl_4  is, sp^3

(4) The hybridization of central atom xenon in XeF_4  is, sp^3d^2

Explanation :

Formula used  :

\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]

where,

V = number of valence electrons present in central atom

N = number of monovalent atoms bonded to central atom

C = charge of cation

A = charge of anion

Now we have to determine the hybridization of the following molecules.

(1) The given molecule is, BeCl_2

\text{Number of electrons}=\frac{1}{2}\times [2+2]=2

The number of electron pair are 2 that means the hybridization will be sp and the electronic geometry of the molecule will be linear.

(2) The given molecule is, NO_2

\text{Number of electrons}=\frac{1}{2}\times [4]=2

If the sum of the number of sigma bonds, lone pair of electrons and odd electrons present is equal to three then the hybridization will be, sp^2.

In nitrogen dioxide, there are two sigma bonds and one lone electron pair. So, the hybridization will be, sp^2.

(3) The given molecule is, CCl_4

\text{Number of electrons}=\frac{1}{2}\times [4+4]=4

The number of electron pair are 4 that means the hybridization will be sp^3 and the electronic geometry of the molecule will be tetrahedral.

(4) The given molecule is, XeF_4

\text{Number of electrons}=\frac{1}{2}\times [8+4]=6

Bond pair electrons = 4

Lone pair electrons = 6 - 4 = 2

The number of electrons are 6 that means the hybridization will be sp^3d^2 and the electronic geometry of the molecule will be octahedral.

But as there are four atoms around the central xenon atom, the fifth and sixth position will be occupied by lone pair of electrons. The repulsion between lone and bond pair of electrons is more and hence the molecular geometry will be square planar.

3 0
1 year ago
Other questions:
  • An atom has 18 protons and 8 valence electrons which statement would best identify this element
    9·2 answers
  • Assume that 8.5 L of iodine gas are produced at STP according to the following balanced equation:
    11·2 answers
  • A student determines measures the mass of one mole of carbon and finds it to be 12.22 grams. if the accepted value is 12.11 gram
    14·1 answer
  • Aurelia dropped a piece of metal into a beaker, and then she added acid to it. She saw colorless bubbles rising from the metal.
    5·2 answers
  • A sample of neon gas at a pressure of 1.08 atm fills a flask with a volume of 250 mL at a temperature of 24.0 °C. If the gas is
    15·1 answer
  • (14.1.50) 0.03 mol of helium are enclosed in a cylinder with a piston which maintains a constant pressure in the helium. Initial
    8·1 answer
  • Question 1
    7·1 answer
  • Suppose you have 200.0 mL of a 0.750 M sodium hydroxide solution. How many
    9·1 answer
  • What is the mass, in grams, of 0.450 moles of Sb?
    10·2 answers
  • How are seat belts related to inertia?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!