Answer:
B) a helium nucleus moving at a velocity of 1000 mph
Explanation:
According to the De Broglie relation
λ= h/mv
h= planks constant
m= mass of the body
v= velocity of the body.
As we can see from De Broglie's relation, the wavelength of matter waves depends on its mass and velocity. Hence, a very small mass moving at a very high velocity will have the greatest De Broglie wavelength.
Of all the options given, helium is the smallest matter. A velocity of 1000mph is quite high hence it will have the greatest De Broglie wavelength.
Answer:
Use E = h*c / lambda, where h is Planck's constant, c is the speed of light, and lambda is the wavelength.
E = (6.626 * 10^-34 J*s x 3.00 * 10^8 m/s) / (1*10^-6 m) = 1.99 * 10^-19 J
Explanation:
Answer:
- Molar mass = 608.36 g/mol
Explanation:
It seems the question is incomplete. However a web search us shows this data:
" Reserpine is a natural product isolated from the roots of the shrub Rauwolfia serpentina. It was first synthesized in 1956 by Nobel Prize winner R. B. Woodward. It is used as a tranquilizer and sedative. When 1.00 g reserpine is dissolved in 25.0 g camphor, the freezing-point depression is 2.63 °C (Kf for camphor is 40 °C·kg/mol). Calculate the molality of the solution and the molar mass of reserpine. "
The <em>freezing-point depression</em> is expressed by:
We put the data given by the problem and <u>solve for m</u>:
- 2.63 °C = 40°C·kg/mol * m
For the calculation of the molar mass:<em> Molality</em> is defined as moles of solute per kilogram of solvent:
- 0.06575 m = Moles reserpine / kg camphor
- 25.0 g camphor ⇒ 25.0/1000 = 0.025 kg camphor
We<u> calculate moles of reserpine:</u>
- 0.06575 m = Moles reserpine / 0.025 kg camphor
- Moles reserpine = 1.64x10⁻³ mol
Finally we use the mass of reserpine and the moles to calculate <u>the molar mass</u>:
- 1.00 g reserpine / 1.64x10⁻³ mol = 608.36 g/mol
<em>Keep in mind that if the data in your problem is different, the results will be different. But the solving method remains the same.</em>
Answer:
Autotrophs are known as producers because they are able to make their own food from raw materials and energy. Examples include plants, algae, and some types of bacteria. Heterotrophs are known as consumers because they consume producers or other consumers. Dogs, birds, fish, and humans are all examples of heterotrophs
Explanation:
So they are heterotrophs
Ticks are tiny parasites that feed on the blood of their hosts (humans and animals) in order to survive and advance to the next life cycle stage.