Answer:
The fraction of energy used to increase the internal energy of the gas is 0.715
Explanation:
Step 1: Data given
Cv for nitrogen gas = 20.8 J/K*mol
Cp for nitrogen gas = 29.1 J/K*mol
Step 2:
At a constant volume, all the heat will increase the internal energy of the gas.
At constant pressure, the gas expands and does work., if the volume changes.
Cp= Cv + R
⇒The value needed to change the internal energy is shown by Cv
⇒The work is given by Cp
To find what fraction of the energy is used to increase the internal energy of the gas, we have to calculate the value of Cv/Cp
Cv/Cp = 20.8 J/K*mol / 29.1 J/K*mol
Cv/Cp = 0.715
The fraction of energy used to increase the internal energy of the gas is 0.715
A compound consists of 2 or more elements that are combined chemically in such a way that the elements themselves can no longer be identified by their individual properties. So the Answer is A.
Find moles of MgSO4.7H2O
molar mass = 246
so moles = 32 / 246 = 0.13 moles.
When heated, all 7 H2O from 1 molecule will be gone.
total moles of H2O present = 7 x 0.13 = 0.91
mass of those H2O = 0.91 x 18 = 16.38g
so mass of anyhydrous MgSO4 remain = 32 - 16.38 = 15.62 g
Answer:
b. 186 g
Explanation:
Step 1: Write the balanced equation.
4 NH₃(g) + 6 NO(g) → 5 N₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 145 g of N₂
The molar mass of nitrogen is 28.01 g/mol.

Step 3: Calculate the moles of NO required to produce 5.18 moles of N₂
The molar ratio of NO to N₂ is 6:5.

Step 4: Calculate the mass corresponding to 6.22 moles of NO
The molar mass of NO is 30.01 g/mol.

Protons and neutrons are the sub-atomic particles present in the nucleus of an atom where as electrons are present revolving round the nucleus in orbits. Electrons are negatively charged, protons are positively charged where as a neutron is a neutral species. It is the presence of electric charge that lead to the discovery of electrons (negative charge) and protons (positive charge), while it took time to discover neutral as they were electrically neutral species. Neutrons carrying no charge were not detected easily by passing electromagnetic radiations. Therefore, neutrons were the last of the three subatomic particles, to be discovered.