11.43g/mL
Explanation:
Given parameters:
Volume of water in the graduated cylinder = 100mL
Volume of water + lead weight = 450mL
Mass of lead weight = 4000g
Unknown:
Density of the lead weight = ?
Solution:
Density is the mass per unit volume of a body.
Density = 
Volume of the lead weight = volume of water displaced
Volume of lead weight = 450 - 100 = 350mL
Density =
= 11.43g/mL
learn more:
Density brainly.com/question/2690299
#learnwithBrainly
Answer: electrons
Explanation: moving electrons cause momentarily charge
Distribution on molecule. This distribution induces similar distribution to
Adjacent molecule.
Answer:uclear Force that holds together the nucleus of an atom. electromagnetic force. ... They are unstable because the Strong Force that would hold them together if the protons and neutrons were closer is weakened because the protons and neutrons get too far apart.
Explanation:
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer: 
Explanation:

cM 0 0
So dissociation constant will be:

Given: c = 0.15 M
pH = 1.86
= ?
Putting in the values we get:
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![1.86=-log[H^+]](https://tex.z-dn.net/?f=1.86%3D-log%5BH%5E%2B%5D)
![[H^+]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


As ![[H^+]=[ClCH_2COO^-]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BClCH_2COO%5E-%5D%3D0.01)

![K_a=1.67\times 10^{-3]](https://tex.z-dn.net/?f=K_a%3D1.67%5Ctimes%2010%5E%7B-3%5D)
Thus the vale of
for the acid is 