Answer:
Trigonal pyramid molecules (three identical bonds)
Explanation:
In trigonal pyramidal molecule like molecule of ammonia , the vector some of intra- molecular dipole moment is not zero because the bonds are not symmetrically oriented . In other molecules , bonds are symmetrically oriented in space so the vector sum of all the internal dipole moment vectors cancel each other to make total dipole moment zero.
The question is missing. Here is the complete question.
Which balanced redox reaction is ocurring in the voltaic cell represented by the notation of
?
(a) 
(b) 
(c)
(d) 
Answer: (d) 
Explanation: <u>Redox</u> <u>Reaction</u> is an oxidation-reduction reaction that happens in the reagents. In this type of reaction, reagent changes its oxidation state: when it loses an electron, oxidation state increases, so it is oxidized; when receives an electron, oxidation state decreases, then it is reduced.
Redox reactions can be represented in shorthand form called <u>cell</u> <u>notation,</u> formed by: <em><u>left side</u></em> of the salt bridge (||), which is always the <em><u>anode</u></em>, i.e., its half-equation is as an <em><u>oxidation</u></em> and <em><u>right side</u></em>, which is always <em><u>the cathode</u></em>, i.e., its half-equation is always a <em><u>reduction</u></em>.
For the cell notation: 
Aluminum's half-equation is oxidation:

For Lead, half-equation is reduction:

Multiply first half-equation for 2 and second half-equation by 3:


Adding them:

The balanced redox reaction with cell notation
is

Answer:
Option C = 4.25 g
Explanation:
Ounce and grams are unit of mass. Ounce is larger unit while gram is smaller unit. The one ounce is consist of 28.35 g or we can say that one ounce is equal to 28.35 g. In order to convert the given ounce value into grams the value is multiply with 28.35 g.
Given data:
Mass = 0.15 ounce
Mass in gram = ?
Solution:
One ounce is equal to 28.35 g, so
0.15 × 28.35 = 4.25 g
Convert 57.6 L to dm3 and divide it by 24
Answer:
The correct option is b. an amino-terminal signal
Explanation:
A polypeptide that will eventually fold to become an ion channel protein, it means a kind of integral membrane protein, has an amino terminal signal that indicates its delivery to endoplasmic reticulum (ER) and then to the membrane. This type of signal usually consist in a nucleus of 6 to 12 aminoacids and one or more basic aminoacids. Once the polypeptide enters the ER, this signal is removed.