Lets take 100 g of this compound,
so it is going to be 2.00 g H, 32.7 g S and 65.3 g O.
2.00 g H *1 mol H/1.01 g H ≈ 1.98 mol H
32.7 g S *1 mol S/ 32.1 g S ≈ 1.02 mol S
65.3 g O * 1 mol O/16.0 g O ≈ 4.08 mol O
1.98 mol H : 1.02 mol S : 4.08 mol O = 2 mol H : 1 mol S : 4 mol O
Empirical formula
H2SO4
1) Balanced chemical reaction:
2H2 + O2 -> 2H20
Sotoichiometry: 2 moles H2: 1 mol O2 : 2 moles H2O
2) Reactant quantities converted to moles
H2: 5.00 g / 2 g/mol = 2.5 mol
O2: 50.0 g / 32 g/mol = 1.5625 mol
Limitant reactant: H2 (because as per the stoichiometry it will be consumed with 1.25 mol of O2).
3) Products
H2 totally consumed -> 0 mol at the end
O2 = 1.25 mol consumed -> 1.5625 mol - 1.25 mol = 0.3125 mol at the end
H2O: 2.5 mol H2 produces 2.5 mol H2O -> 2.5 mol at the end.
Total number of moles: 0.3125mol + 2.5 mol = 2.8125 mol
4) Pressure
Use pV = nRT
n = 2.8125
V= 9 liters
R = 0.082 atm*lit/K*mol
T = 35 C + 273.15 = 308.15K
p = nRT/V = 7.9 atm
<span>Both plants and animals fight pathogens is because both have an ant. </span><span>The answer is B.
P</span>athogens is <span>a bacterium, virus, or other microorganism that can cause disease.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
The answer is Option a, that is "−9kJmole,5kJmole".
Explanation:
Please find the complete question in the attached file.
In the question, it uses the catalyst inside a process, which does not modify the process eigenvalues, however, it decreases the active energy with an enthalpy of -9kJmole, and also the power for activating decreases around 13 to 5 kJ mole, that's why the choice a is correct.
Answer:
Final pressure = 2.3225 atm
Amontons’s law states that
At constant volume and number of molecules, the pressure of a given mass of gas is directly proportional to its temperature
Explanation:
Temperature causes increased excitement of gas molecules increasing the number of collisions with the walls of the container which is sensed as increase in pressure
Amontons’s law: P/T = Constant at constant V and n
That is P1/T1 = P2/T2
Where temperature is given in Kelvin
Hence T1 of 10°C = 273.15 + 10 = 283.15K
Also temperature T2 of 40°C = 313.15 K
Hence
P2 = (P1/T1)×T2 = (2.1/283.15)×313.15 = 2.3225 atm