The new volume at standard pressure of 1 atm is 21294 liters.
Explanation:
Data given:
Initial volume of the gas V1 = 338 liters
initial pressure on the gas P1 = 63 atm
standard pressure as P2 = 1 atm
Final volume at standard pressure V2 =?
The data given shows that Boyle's law equation is to used:
P1V1 = P2V2
rearranging the equation to calculate V2,
V2 = 
Putting the values in the equation:
V2 = 
= 21294 L
as the pressure on the gas is reduced to 1 atm the volume of the gas increased incredibly to 21294 litres.
Answer:
a)4.51
b) 9.96
Explanation:
Given:
NaOH = 0.112M
H2S03 = 0.112 M
V = 60 ml
H2S03 pKa1= 1.857
pKa2 = 7.172
a) to calculate pH at first equivalence point, we calculate the pH between pKa1 and pKa2 as it is in between.
Therefore, the half points will also be the middle point.
Solving, we have:
pH = (½)* pKa1 + pKa2
pH = (½) * (1.857 + 7.172)
= 4.51
Thus, pH at first equivalence point is 4.51
b) pH at second equivalence point:
We already know there is a presence of SO3-2, and it ionizes to form
SO3-2 + H2O <>HSO3- + OH-
![Kb = \frac{[ HSO3-][0H-]}{SO3-2}](https://tex.z-dn.net/?f=%20Kb%20%3D%20%5Cfrac%7B%5B%20HSO3-%5D%5B0H-%5D%7D%7BSO3-2%7D)

[HSO3-] = x = [OH-]
mmol of SO3-2 = MV
= 0.112 * 60 = 6.72
We need to find the V of NaOh,
V of NaOh = (2 * mmol)/M
= (2 * 6.72)/0.122
= 120ml
For total V in equivalence point, we have:
60ml + 120ml = 180ml
[S03-2] = 6.72/120
= 0.056 M
Substituting for values gotten in the equation ![Kb=\frac{[HSO3-][OH-]}{[SO3-2]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BHSO3-%5D%5BOH-%5D%7D%7B%5BSO3-2%5D%7D%20)
We noe have:

![x = [OH-] = 9.11*10^-^5](https://tex.z-dn.net/?f=x%20%3D%20%5BOH-%5D%20%3D%209.11%2A10%5E-%5E5)

=4.04
pH = 14- pOH
= 14 - 4.04
= 9.96
The pH at second equivalence point is 9.96
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Answer:
1) The bubbles will grow, and more may appear.
2)Can A will make a louder and stronger fizz than can B.
Explanation:
When you squeeze the sides of the bottle you increase the pressure pushing on the bubble, making it compress into a smaller space. This decrease in volume causes the bubble to increase in density. When the bubble increases in density, the bubble will grow and more bubbles will appear. Therefore, Changing the pressure (by squeezing the bottle) changes the volume of the bubbles. The number of bubbles doesn't change, just their size increases.
Carbonated drinks tend to lose their fizz at higher temperatures because the loss of carbon dioxide in liquids is increased as temperature is raised. This can be explained by the fact that when carbonated liquids are exposed to high temperatures, the solubility of gases in them is decreased. Hence the solubility of CO2 gas in can A at 32°C is less than the solubility of CO2 in can B at 8°C. Thus can A will tend to make a louder fizz more than can B.
The Options are as follow,
<span> (1) CaCl</span>₂<span> (s) (3) CH</span>₃<span>OH (l)</span>
<span> (2) C</span>₂<span>H</span>₆<span> (g) (4) Cal</span>₂<span> (aq)</span>
Answer:
Option-1 is the correct answer.
Explanation:
As we know crystal formation is the property of solids. Therefore, in given options we are given with four different states of matter.
Option A, CaCl₂ is in a solid state , so it can exist in crystal form.
Option 2, C₂H₆ (Ethane) is in gas form, so it cannot form crystals.
Option 3, CH₃OH (Methanol) is present in liquid form, so it fails to form crystals.
Option 4, CaI₂, it is dissolved in water, Hence, it is in aqueous state, Therefore it also lacks crystal structure.