Answer:
194 g/mol.
Explanation:
Hello,
In this case, one first must compute the mass of each element as shown below:

Next, the corresponding moles:

Then, each element's subscripts is found to be:

Therefore, the empirical formula is:

Nonetheless, it has a molar mass of 97bg/mol, thereby, by multiplying such formula by 2 one gets:

Which has a molar mass of 194 g/mol being correctly contained in the given interval.
Best regards.
Answer:
A. The moles of H(aq) equal the moles of OH
Explanation:
Thats what my chemistry teacher said Just trying to help out since theres no other answers.
Answer:

Explanation:
1. Molar concentration
Let's call chloroform C and acetone A.
Molar concentration of C = Moles of C/Litres of solution
(a) Moles of C
Assume 0.187 mol of C.
That takes care of that.
(b) Litres of solution
Then we have 0.813 mol of A.
(i) Mass of each component

(ii) Volume of each component

(iii) Volume of solution
If there is no change of volume on mixing.
V = 15.08 mL + 59.70 mL = 74.78 mL
(c) Molar concentration of C

2. Molal concentration of C
Molal concentration = moles of solute/kilograms of solvent
Moles of C = 0.187 mol
Mass of A = 47.22 g = 0.047 22 kg

<span>Answer:
Zn(2+) + 2e(-) -------> Zn
1 mole of Zn is deposited by 2F of electricity ...
so 48.9 mole of Zn will be deposited by 48.9 X 2F = 97.8 F of electricity...
as 1F = 96500 C
so 97.8 F = 97.8 X 96500 = 9437700 C of electricity...</span>