For this type of problem, it is essential for you to have a data on the standard heats of formation of the substances given. For elemental substances or diatomic gases, the standard heat of formation is 0. Standard means the temperature is at 0°C and pressure at 1 atm. Calculate the standard heat of reaction using:
ΔH°rxn = ∑(Stoichiometric coefficient×ΔHf of products) - ∑(Stoichiometric coefficient×ΔHf of reactants)
Then, use this equation to find the reaction at T = 500°C and P = 1 bar:
ΔHrxn = ΔH°rxn + [∑(Stoichiometric coefficient×Cp of products) - ∑(Stoichiometric coefficient×ΔHf of reactants)]ΔT
So, you also need the Cp or specific heat capacities of the substances.
The correct option is C.
A Lewis dot diagram is a representation of the valence electron of an atom, which uses dot around the symbol of the atom. Chlorine has seven electrons in its outermost shell, these seven electrons are arranged in form of dot around the atom of chlorine. If you count the number of dot given in option C, you will notice that they are seven.
Answer:An ion with 5 protons, 6 neutrons and a charge of 3+ has an atomic number of 5
Explanation:
Answer:
38503.5N
Explanation:
Data obtained from the question include:
P (pressure) = 5.00 atm
Now, we need to convert 5atm to a number in N/m2 in order to obtain the desired result of force in Newton (N). This is illustrated below:
1 atm = 101325N/m2
5 atm = 5 x 101325 = 506625N/m^2
A (area of piston) = 0.0760 m^2
Pressure is force per unit area. Mathematically it is written as
P = F/A
F = P x A
F = 506625 x 0.0760
F = 38503.5N
Therefore, the force exerted on the piston is 38503.5N
Answer:
A polysaccharide (n) can be formed by linking several monosaccharides through glycosidic linkages.
Explanation:
Polysaccharides are carbohydrates or complex carbohydrates, where monosaccharides join with glucosidic bonds to form a more complex structure that would be the polysaccharide.
An example of a polysaccharide is starch, or glycogen.
Starch is found in many foods such as potatoes or rice, and glycogen is a form of energy reserve of our organism housed in muscles and liver to fulfill locomotion, physical activity, and other activities that consist of glycolysis.
Polysaccharides are degraded in our body by different stages, and several enzymes unlike monosoccharides or disaccharides, since they have more unions and a more complex structure to disarm in our body and thus assimilate it.
Polysaccharides are also part of animal structures, such as insect shells or nutritional sources, among others.