Convert moles to mass.
mass C = 0.2 mol * 12 g / mol = 2.4 g
mass H = 0.4 mol * 1 g / mol = 0.4 g
So mass left for O = 6 g – (2.4 g + 0.4 g) = 3.2 g
Calculating for moles O given mass:
moles O = 3.2 g / (16 g / mol) = 0.2 moles
Answer:
<span>0.2 moles O</span>
Answer:
1219.5 kj/mol
Explanation:
To reach this result, you must use the formula:
ΔHºrxn = Σn * (BE reactant) - Σn * (BE product)
ΔHºrxn = [1 * (BE C = C) + 2 * (BE C-H) + 5/2 * (BE O = O)] - [4 * (BE C = O) + 2 * (BE O-H).
The BE values are:
BE C = C: 839 kj / mol
BE C-H: 413 Kj / mol
BE O = O: 495 kj / mol
BE C = O = 799 Kj / mol
BE O-H = 463 kj / mol
Now you must replace the values in the above equation, the result of which will be:
ΔHºrxn = [1 * 839 + 2 * (413) + 5/2 * (495)] - [4 * (799) + 2 * (463) = 1219.5 kj/mol
Partial pressure is the amount of pressure or force that is exerted by the atoms into the outer environment. it is dependent on the temperature and pressure of the present surroundings. in this case, we are asked in this problem to determine the partial pressure of oxygen at 16oC and 1 atm. We have to look into a solubility data table commonly found in handbooks and determined via experiments and correlations. According to literature, the value of the partial pressure is equal to 0.617 mM.This is under the assumption that the salinity of the water in which oxygen is dissolved is equal to zero.
Answer:It is not an element because elements are the purest form of a substance; hence, they are no longer broken down by heating
Explanation: