c. A full s subshell is able to shield a newly filled p subshell from the nucleus, making the first electron in a p subshell easy to remove.
Explanation:
From the given options, a full s-sublevel is able to shield a newly filled p-subshell from the nucleus thereby making the first electron in a p-subshell easy to remove is correct.
What is ionization energy?
Ionization energy is a measure of the readiness of an atom to lose an electron.
First ionization energy is the energy required to remove the most loosely held electron in the gas phase.
The size of an atom/element depends on the number of electrons it contains. The more the electrons, the larger its size.
- The larger an atom becomes the lesser the ionization energy needed to remove the first electron from its outermost shell.
Electron - electron repulsion occurs when two electrons in the same sub-level repels one another.
Shielding effect is the ability of the inner electrons to protect the outer electrons from the pull of the nuclear charge.
In option C, a s-subshell has a greater shielding effect than the p,d and f sub-shell in that order.
A newly introduced electron in the p-sublevel will be loosely held and easier to remove.
Learn more:
First ionization energy brainly.com/question/2153804
#learnwithBrainly
Answer:
1 electron is involved.
Explanation:
Hello,
In redox reactions, when therer's the necessity to know the involved equivalents, they equal the number of transferred electrons, in this case, since one equivalent is stated, one electron is transferred (involved).
Best regards.
The limiting reactant can be determined by calculating the
moles supplied / moles stoich ratio and the lowest is the limiting reactant.
Fe(CO)5 ratio = [6 g / 195.9 g/mol] / 1
Fe(CO)5 ratio = 0.0306
PF3 ratio = [4 g / 87.97 g/mol] / 2
PF3 ratio = 0.0227
H2 ratio = [4 g / 2 g/mol] / 1
H2 ratio = 2
<span>We can see that PF3 has the lowest ratio, so it is the
limiting reactant.</span>
Answer:
B
Explanation:
Firstly, we will need to calculate the number of moles. To do this, we make use of the ideal gas equation
PV = nRT
n = PV/RT
The parameters have the following values according to the question:
P = 780mmHg, we convert this to pascal.
760mHG = 101325pa
780mmHg = xpa
x = (780 * 101325)/760 = 103,991 Pa
V= 400ml = 0.4L
T = 135C = 135 + 273.15 = 408.15K
n = ?
R = 8314.463LPa/K.mol
Substituting these values into the equation yields the following:
n = (103991 * 0.4)/(8314.463 * 408.15)
= 0.012 moles
Now we know 1 mole contains 6.02 * 10^23 molecules, hence, 0.012moles will contain = 0.012 * 6.02 * 10^23 = 7.38 * 10^21 molecules
<span>The fog in the mirror is the condensation of water vapor as it touches a colder surface. When you are running cold water you just cool down everything around it. Now the vapor coming from the hot shower will mostly condense right there and will not reach the mirror.</span>