Answer: pH=12.69
Explanation:



Initial 0.12 0 0
Eqm 0.12-x x x
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
(neglecting small value of x in comparison to 0.12)

Moles of 



0.06 moles of NaOH will give 0.06 moles of ![[OH^-]](https://tex.z-dn.net/?f=%5BOH%5E-%5D)
Now
moles of
will be neutralized by
moles of
and
moles of
will be left.
Molarity of 
![pOH=-\log[OH^-]=-\log[0.049]=1.31](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B0.049%5D%3D1.31)
pH = 14 - pOH= 14 - 1.31 = 12.69
To answer the problem given:
|0.53−4.0| / 4.0 * 100%
= 3.47 / 4.0 * 100%
= 87%
The maximum theoretical percent recovery from the
crystallization of 4.0 g of acetanilide from 100 ml of water is 87%. I
am hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.
Answer: d. More than 6.5 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.
Explanation: 
As can be seen from the chemical equation, 2 moles of aluminium react with 3 moles of copper chloride.
According to mole concept, 1 mole of every substance weighs equal to its molar mass.
Aluminium is the limiting reagent as it limits the formation of product and copper chloride is the excess reagent as (14-7.5)=6.5 g is left as such.
Thus 54 g of of aluminium react with 270 g of copper chloride.
1.50 g of aluminium react with=
of copper chloride.
3 moles of copper chloride gives 3 moles of copper.
7.5 g of copper chloride gives 7.5 g of copper.
Gravitational potential energy is observed when an object is not in rest or is in motion. In this case, the helicopter is in motion where the direction is going upward with a negative potential energy. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
The correct Lewis structure for Fluorine is A.