3.98 x 10⁻¹⁹ Joule
<h3>Further explanation</h3>
<u>Given:</u>
The green light has a frequency of about 6.00 x 10¹⁴ s⁻¹.
<u>Question:</u>
The energy of a photon of green light (in joules).
<u>The Process:</u>
The energy of a photon is given by 
- E = energy in joules
- h = Planck's constant 6.63 x 10⁻³⁴ Js
- f = frequency of light in Hz (sometimes the symbol f is written as v)
Let us find out the energy of the green light emitted per photon.

Thus, we get a result of 
- - - - - - - - - -
Notes
- When an electron moves between energy levels it must emit or absorb energy.
- The energy emitted or absorbed corresponds to the difference between the two allowed energy states, i.e., as packets of light called photons.
- A higher energy photon corresponds to a higher frequency (shorter wavelength) of light.
<h3>Learn more</h3>
- The energy of the orange light emitted per photon brainly.com/question/2485282#
- Determine the density of our sun at the end of its lifetime brainly.com/question/5189537
- Find out the kinetic energy of the emitted electrons when metal is exposed to UV rays brainly.com/question/5416146
Keywords: green light, frequency, the energy, a photon, Planck's constant, electrons, emitted, wavelength, joules
Given mass of tungsten, W = 415 g
Molar mass of tungsten, W = 183.85 g/mol
Calculating moles of tungsten from mass and molar mass:

Answer:
(a) I⁻ (charge 1-)
(b) Sr²⁺ (charge 2+)
(c) K⁺ (charge 1+)
(d) N³⁻ (charge 3-)
(e) S²⁻ (charge 2-)
(f) In³⁺ (charge 3+)
Explanation:
To predict the charge on a monoatomic ion we need to consider the octet rule: atoms will gain, lose or share electrons to complete their valence shell with 8 electrons.
(a) |
I has 7 valence electrons so it gains 1 electron to form I⁻ (charge 1-).
(b) Sr
Sr has 2 valence electrons so it loses 2 electrons to form Sr²⁺ (charge 2+).
(c) K
K has 1 valence electron so it loses 1 electron to form K⁺ (charge 1+).
(d) N
N has 5 valence electrons so it gains 3 electrons to form N³⁻ (charge 3-).
(e) S
S has 6 valence electrons so it gains 2 electrons to form S²⁻ (charge 2-).
(f) In
In has 3 valence electrons so it loses 3 electrons to form In³⁺ (charge 3+).