In this question, you are given the average cofactor mass per cell (41.5pg) and the total cells count(105 cells). You are asked how much cofactor that will be found from those cells(microgram= 10^6 picogram). Then the calculation would be:
Cofactor mass= cofactor per cell * cell count= 41.5pg/cell * 105 cells= 4357.5pg= 4.36 x 10^3pg
Then convert the picogram(pg) into microgram: 4.36 x 10^3pg/ (10^6pg/microgram)= 4.36x10^-3 microgram or 0.00436 microgram
if 105 cells mean 10^5 cells, the answer should be 4.15 microgram
Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
First, we assume that helium behaves as an ideal gas such that the ideal gas law is applicable.
PV = nRT
where P is pressure, V is volume, n is number of moles, R is universal gas constant, and T is temperature. From the equation, if n, R, and T are constant, there is an inverse relationship between P and V. From the given choices, the container with the greatest pressure would be the 50 mL.
Formula of hydrated sodium carbonate : Na₂CO₃.10H₂O, so moles of water in one mole of hydrated salt = 10
<h3>Further explanation</h3>
Hydrate is a compound that binds water (H₂O), usually in the form of crystals/ solids
If these compounds are dissolved in water or heated, the hydrates can decompose:
Example: X.YH₂O (s) → X (aq) + YH₂O (l)
The formula for the hydrated compound contains: YH2O
The mole ratio shows the ratio of the coefficients of the hydrate compound
10.45 hydrated sodium carbonate(Na₂CO₃.xH₂O) were heated until 3.87 of 3.87of anhydrous (Na₂CO₃) remained, so
mass H₂O released :

mass Na₂CO₃ = 3.87 g
mol ratio Na₂CO₃(MW= g/mol) : H₂O(MW=18 g/mol) =

Answer is: 0,133 mol/ l· atm.
T(chlorine) = 10°C = 283K.
p(chlorine) = 1 atm.
V(chlorine) = 3,10 l.
R - gas constant, R = 0.0821 atm·l/mol·K.
Ideal gas law: p·V = n·R·T
n(chlorine) = p·V ÷ R·T.
n(chlorine) = 1atm · 3,10l ÷ 0,0821 atm·l/mol·K · 283K = 0,133mol.
Henry's law: c = p·k.
k - <span>Henry's law constant.
</span>c - solubility of a gas at a fixed temperature in a particular solvent.
c = 0,133 mol/l.
k = 0,133 mol/l ÷ 1 atm = 0,133 mol/ l· atm.