We are given with
4.35 g Phosphoric acid
5.25 g KOH
3.15 g K3PO4 produced
The reaction is
H3PO4 + 3KOH => K3PO4 + 3H2O
First, convert masses into moles.
Then, determine the limiting reactant.
Next, determine the maximum amount of K3PO4 that can be produced from the limiting reactant.
Lastly, calculate the percent yield by dividing the actual amount produced by the theoretical amount produced.
Answer: D. They are made up of hard spheres that are in random motion.
Explanation:
A gas is a <u>state of aggregation of matter</u> in which, under certain conditions of temperature and pressure, <u>its molecules interact weakly with each other, without forming molecular bonds</u>, adopting the shape and volume of the container that contains them and tending to separate everything possible because of its <u>high concentration of kinetic energy</u>.
The molecules of a gas are practically <u>free</u> and have the ability to be distributed throughout the space in which they are contained because <u>the gravitational forces and attraction between them are practically negligible</u> compared to the speed at which they move. .
Therefore, gas molecules do not travel specific trajectories or vibrate in a stationary position, instead <u>they move quickly and randomly through the entire space of the container that contains them.</u>
Mass percentage is another way of expressing concentration of a substance in a mixture. Mass percentage is calculated as the mass of a component divided by the total mass of the mixture, multiplied by 100%. It is calculated as follows:
% CaCO3 = (<span>1.82g of calcium carbonate</span> / (1.05 g SiO2 + 0.69 g of cellulose + <span>1.82g of calcium carbonate)) x 100% = 51.12% Calcium carbonate</span>
The rate of Formation of Carbocation mainly depends on two factors'
1) Stability of Carbocation: The ease of formation of Carbocation mainly depends upon the ionization of substrate. If the forming carbocation id tertiary then it is more stable and hence readily formed as compared to secondary and primary.
2) Ease of detaching of Leaving Group: The more readily and easily the leaving group leaves the more readily the carbocation is formed and vice versa. In given scenario the carbocation formed is tertiary in all three cases, the difference comes in the leaving group. So, among these three substrates the one containing Iodo group will easily dissociate to form tertiary carbocation because due to its large size Iodine easily leaves the substrate, secondly Chlorine is a good leaving group compared to Fluoride. Hence the order of rate of formation of carbocation is,
R-I > R-Cl > R-F
B > C > A
Answer:
it will not be soluble in water Becoz it can only be
separated by passing it through silver nitrate solution
Explanation:
i hope you understand