Answer:
A) ∆Suniv >0, ∆G<0, T∆Suniv >0.
Explanation:
The connection between entropy and the spontaneity of a reaction is expressed by the <u>second law of thermodynamics</u><u>: The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process</u>.
Mathematically, we can express the second law of thermodynamics as follows:
For a spontaneous process: ΔSuniv = ΔSsys + ΔSsurr > 0
Therefore, the second law of thermodynamics tells us that a spontaneous reaction increases the entropy of the universe; that is, ΔSuniv > 0.
If we want spontaneity expressed only in terms of the properties of the system (ΔHsys and ΔSsys), we use the following equation:
-TΔSuniv = ΔHsys - TΔSsys < 0
That means that T∆Suniv >0.
This equation says that for a process carried out at constant pressure and temperature T, if the changes in enthalpy and entropy of the system are such that <u>ΔHsys - TΔSsys is less than zero, the process must be spontaneous.</u>
Finally, if the change in free energy is less than zero (ΔG<0), the reaction is spontaneous in the forward direction.
The rate constant, k, for the decomposition reaction : k = 0.0124 / days
<h3>Further explanation</h3>
Given
The half-life of 56 days
Required
The rate constant, k
Solution
For first-order, rate law : ln[A]=−kt+ln[A]o
The half-life : the time required to reduce to half of its initial value.
The half life :
t1/2 = (ln 2) / k
k = (ln 2) / t1/2
k = 0.693 / 56 days
k = 0.0124 / days
4.658. Accuracy refers to how close the experimental value is to the actual value. Precision is how close a set of data is to one another.
Option A. Kidneys.
Excess water, salt, uric acid and other chemicals are wastes that kidneys filter and discard through urine.