<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05
Water typically exist in its gaseous state in the atmosphere. Fog contains droplets of liquid water suspended in the air. Thus to produce a fog, vapor in the air would undergo condensation with a state change from gas to liquid.
Intermolecular interactions between water molecules strengthen as the vapor condenses to produce a liquid. The condensation of vapor thus involves a production of energy. With all the extra intermolecular interactions, molecules in the fog would find it more difficult to move around and therefore see a decrease in their motion.
Mg(No3)2 is calculated as follows
moles = mass/molar mass
the molar mass of Mg(NO3)2 is = 148 g/mol
moles is therefore= 2.25 g / 148 g/mol= 0.0152 moles
Mg(No3)2 contain 0.0152 moles of the compound
<span>100.
ppb of chcl3 in drinking water means 100 g of CHCl3 in 1,000,0000,000 g of water
Molarity, M
M = number of moles of solute / volume of solution in liters
number of moles of solute = mass of CHCl3 / molar mass of CHCl3
molar mass of CHCl3 = 119.37 g/mol
number of moles of solute = 100 g / 119.37 g/mol = 0.838 mol
using density of water = 1 g/ ml => 1,000,000,000 g = 1,000,000 liters
M = 0.838 / 1,000,000 = 8.38 * 10^ - 7 M <----- answer
Molality, m
m = number of moles of solute / kg of solvent
number of moles of solute = 0.838
kg of solvent = kg of water = 1,000,000 kg
m = 0.838 moles / 1,000,000 kg = 8.38 * 10^ - 7 m <----- answer
mole fraction of solute, X solute
X solute = number of moles of solute / number of moles of solution
number of moles of solute = 0.838
number of moles of solution = number of moles of solute + number of moles of solvent
number of moles of solvent = mass of water / molar mass of water = 1,000,000,000 g / 18.01528 g/mol = 55,508,435 moles
number of moles of solution = 0.838 moles + 55,508,435 moles = 55,508,436 moles
X solute = 0.838 / 55,508,435 = 1.51 * 10 ^ - 8 <------ answer
mass percent, %
% = (mass of solute / mass of solution) * 100 = (100g / 1,000,000,100 g) * 100 =
% = 10 ^ - 6 % <------- answer
</span>
Answer : The value of ΔH for this reaction is, -1516 kJ/mol
Explanation :
First we have to calculate the moles of 



Now we have to calculate the ΔH for this reaction.
As, 2.5 mole of
react to gives heat = -3790 kJ
So, 1 mole of
react to gives heat = 
= -1516 kJ/mol
Therefore, the value of ΔH for this reaction is, -1516 kJ/mol