<span>λν = c
c= speed of light= 3.0x10^8 m/s
</span>λ=wavelength
v= frequency
Plug and Chug.
Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Answer:
1.123x10⁻⁴ moles of alanine
Explanation:
In order to convert grams of alanine into moles, <em>we need to know its molecular weight</em>:
The formula for alanine is C₃H₇NO₂, meaning <u>its molecular weight would be</u>:
- 12*3 + 7*1 + 14 + 16*2 = 89 g/mol
Then we <u>divide the sample mass by the molecular weight</u>, to do the conversion:
- 1.0x10⁻² g ÷ 89 g/mol = 1.123x10⁻⁴ moles
Its total charge is zero but for the elements:
Sn===> Sn4+ positive
Cl===> Cl- negative
Answer:
Conversion of kinetic energy to potential energy (chemo mechanical energy)
In the state of rest, the rubber is a tangled mass of long chained cross-linked polymer that due to their disorderliness are in a state of increased entropy. By pulling on the polymer, the applied kinetic energy stretches the polymer into straight chains, giving them order and reducing their entropy. The stretched rubber then has energy stored in the form of chemo mechanical energy which is a form of potential energy
Conversion of the stored potential energy in the stretched to kinetic energy
By remaining in a stretched condition, the rubber is in a state of high potential energy, when the force holding the rubber in place is removed, due to the laws of thermodynamics, the polymers in the rubber curls back to their state of "random" tangled mass releasing the stored potential energy in the process and doing work such as moving items placed in the rubber's path of motion such as an object that has weight, w then takes up the kinetic energy 1/2×m×v² which can can result in the flight of the object.
Explanation: