A. 1.01 is the right answer
Since
The formula is Pv= nRT
P=1 atm
V= 22.4 L
N= x
r= 0.0821
t = 273 k (bc it’s standard temperature)
So (1)(22.4)=(x)(0.0821)(273)
X= 1.001
The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.
Answer:- 0.138 M
Solution:- The buffer pH is calculated using Handerson equation:

acts as a weak acid and
as a base which is pretty conjugate base of the weak acid we have.
The acid hase two protons(hydrogen) where as the base has only one proton. So, we could write the equation as:

Phosphoric acid gives protons in three steps. So, the above equation is the second step as the acid has only two protons and the base has one proton.
So, we will use the second pKa value. The acid concentration is given as 0.10 M and we are asked to calculate the concentration of the base to make a buffer of exactly pH 7.00.
Let's plug in the values in the equation:



Taking antilog:


On cross multiply:
[base] = 1.38(0.10)
[base] = 0.138
So, the concentration of the base that is
required to make the buffer is 0.138M.
Guess and check, test, trial and error, completion.
Answer:
(1)=(A), (2)=(B), (3)=D, (4)=C, (5)=E, (6)=F
Explanation:
(1) Glassware used to accurately transfer small volumes = (A) Graduated pipette, that is basically a glass tube with graduation of different volumes to be dispensed.
(2) Glassware used to accurately transfer a small, single volume = (B) Volumetric pipette, that is a glass tube with a central glass bulb and is used to dispense accurately an unique volume of liquid everytime.
(3) Glassware to deliver a volume not known in advance = (D) Buret (or burette), that is used to dispense slowly a volume of liquid when a titration process is needed
(4) Glassware best used when greater access to the contents is needed = (C) Beaker, that is basically a very open glass cylinder with a spout
(5) Glassware used to prevent splashing or evaporation = (E) Erlenmeyer flask, that has a small open at the top and is useful when the liquid needs to be swirled as, for example, during a titration.
(6) Glassware used to make accurate solutions = (F) Volumetric flask, that has a long slim neck that provides a higher accuracy when a exact volume of liquid needs to be used for preparation of a solution.