Explanation:
Endothermic animals are also known as warm-blooded, they have the capacity to regulate their body temperature independent of the environment. They have mechanisms to compensate if heat loss exceeds heat generation (shivers) Or if heat generation exceeds the heat loss (panting, sweating).
On the other hand, ectothermal animals are known as cold blooded organisms and depend on external sources, like sunlight, to regulate their body temperature, reptiles are ectothermals.
To determine if the animal of interest is endo or ectothermal you’ll have to consider that is a reptile, you’ll also observe that it consumes less food and finally it’ll have more difficulties to adapt to sudden temperature changes.
I hope you find this information useful and interesting! Good luck!
Answer:
Th answer to your question is:
a) 3.5 x10⁻¹⁰ meters; 0.35 nm
b) 6857142.86 atoms
c) Volume = 2.06 x 10⁻²³ cm³
Explanation:
a) data
Uranium atoms = 3.5A°
meters
1 A° ---------------- 1 x 10 ⁻¹⁰ m
3.5A° --------------- x
x = 3.5(1 x10⁻¹⁰)/ 1 = 3.5 x10⁻¹⁰ meters
1 A° ------------------ 0.1 nm
3.5 A° ---------------- 0.35 nm
b) 2.4 mm
Divide 2,40 mm / uranium diameter
But, first convert 3,5A° to mm = 3.5 x 10⁻⁷ mm
# of uranium atoms = 2.4 / 3.5 x 10⁻⁷ = 6857142.86
c) volume in cubic cm
Convert 3.5A° to cm = 3.5 x 10⁻⁸
Volume = 4/3 πr³ = (4/3) (3.14)(1.7 x10⁻⁸)³
Volume = 2.06 x 10⁻²³ cm³
Answer:
A 3s orbital is at a greater average distance from the nucleus than a 2s orbital
Explanation:
As the principal quantum number n increases, the distance of the orbital from the nucleus increases. Hence if we consider the 2s and 3s orbitals, it is easy to see that the 3s orbital is at a greater distance from the nucleus than the 2s orbitals.
This is clearly seen when we plot the radial distribution against the distance from the nucleus. This enables us to visualize the region in space in which an electron may be found.
The heavy player hits the lighter player with more force.
The lighter player gets hurt more after the collision
Explanation:
A heavy player will hit a light player with more force and eventually, the lighter player will get hurt the more after the collision.
Force is a function of mass and acceleration of a body;
Force = mass x acceleration
We can see that the more the mass and acceleration of a body, the more the force they can exert.
It is obvious that the mass of the heavier player is more than that of light player. Therefore, it exerts more force on the other one.
Also, the lighter player will get hurt the more after collision. The momentum with which the heavier football player hits the light one is very great. After the collision, the light footballer will most definitely change acceleration and direction of traveling.
learn more:
Momentum brainly.com/question/2990238
#learnwithBrainly