Answer
- continuous removal of PH3
- adding more of P into the system
Explanation:
In the reaction P4(g)+6H2(g) ⇌ 4PH3(g);
- The effect of temperature on equilibrium has to do with the heat of reaction. Recall that for an endothermic reaction, heat is absorbed in the reaction, and the value of ΔH is positive. Thus, for an endothermic reaction, we can picture heat as being a reactant:
heat+A⇌BΔH=+
- Since the reaction is endothermic reaction, heat is a absorbed. Decreasing the temperature will shift the equilibrium to the left, while increasing the temperature will shift the equilibrium to the right forming more of PH3.
- According to Le Chatelier’s principle, adding additional reactant to a system will shift the equilibrium to the right, towards the side of the products. In the same Way, reducing the concentration of the product will also shift equilibrium to the right continually forming PH3 as it is removed.
If the substance has high melting/boiling point, if it requires high temperature to dissociate into simpler particles, if it's structure is hard and if it conducts heat and electricity quite frequently, then it would be "Ionic compound" otherwise, it will be covalent compound. (compound with covalent bonds).
Substance with ionic bonds, would include... (mentioned in first sentence)
Hope this helps!
<span>0.127 moles
The formula for nitroglycerin is C3H5N3O9 so let's first calculate the molar mass of it.
Carbon = 12.0107
Nitrogen = 14.0067
Hydrogen = 1.00794
Oxygen = 15.999
C3H5N3O9 = 3 * 12.0107 + 5 * 1.00794 + 3 * 14.0067 + 9 * 15.999 = 227.0829
Now calculate the number of moles of nitroglycerin you have by dividing the mass by the molar mass
2.50 ml * 1.592 g/ml / 227.0829 g/mol = 0.017527 mol
The balanced formula for when nitroglycerin explodes is
4 C3H5N3O9 => 12 CO2 + 10 H2O + O2 + 6 N2
Since all of the products are gasses at the time of the explosion, there is a total of 29 moles of gas produced for every 4 moles of nitroglycerin
Now multiply the number of moles of nitroglycerin by 29/4
0.017527 mol * 29/4 = 0.12707075 moles
Round to 3 significant figures, giving 0.127 moles</span>
Explanation: Electron dot structures are the lewis dot structures which represent the number of valence electrons around an atom in a molecule.
The electronic configuration of potassium is ![[Ar]4s^1](https://tex.z-dn.net/?f=%5BAr%5D4s%5E1)
Valence electrons of potassium are 1.
The electronic configuration of Bromine is ![[Ar]4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E24p%5E5)
Valence electrons of bromine are 7.
These two elements form ionic compound.
Ionic compound is defined as the compound which is formed from the complete transfer of electrons from one element to another element.
Here, one electron is released by potassium which is accepted by bromine element. In this process, Potassium becomes cation having +1 charge and Bromine become anion having (-1) charge.
The ionic equation follows:

The electron dot structure is provided in the image below.
Answer:
The composition of 1-propanol in vapor phase = 11.54 %
The composition of 2-propanol in vapor phase = 88.46 %
Explanation:
Mole fraction of components in liquid phase:
1-propanol = 
2-propanol = 

Partial pressure of 1-propanol =
Partial pressure of 2-propanol =
According to Raoults law:


Mole fraction of components in vapor phase:
1-propanol = 

The composition of 1-propanol in vapor phase:
100 × 0.1154= 11.54 %
2-propanol = 

The composition of 2-propanol in vapor phase:
100 × 0.8846 = 88.46 %