Answer:
NH₃/NH₄Cl
Explanation:
We can calculate the pH of a buffer using the Henderson-Hasselbalch's equation.
![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
If the concentration of the acid is equal to that of the base, the pH will be equal to the pKa of the buffer. The optimum range of work of pH is pKa ± 1.
Let's consider the following buffers and their pKa.
- CH₃COONa/CH3COOH (pKa = 4.74)
The optimum buffer is NH₃/NH₄Cl.
3.98 x 10⁻¹⁹ Joule
<h3>Further explanation</h3>
<u>Given:</u>
The green light has a frequency of about 6.00 x 10¹⁴ s⁻¹.
<u>Question:</u>
The energy of a photon of green light (in joules).
<u>The Process:</u>
The energy of a photon is given by 
- E = energy in joules
- h = Planck's constant 6.63 x 10⁻³⁴ Js
- f = frequency of light in Hz (sometimes the symbol f is written as v)
Let us find out the energy of the green light emitted per photon.

Thus, we get a result of 
- - - - - - - - - -
Notes
- When an electron moves between energy levels it must emit or absorb energy.
- The energy emitted or absorbed corresponds to the difference between the two allowed energy states, i.e., as packets of light called photons.
- A higher energy photon corresponds to a higher frequency (shorter wavelength) of light.
<h3>Learn more</h3>
- The energy of the orange light emitted per photon brainly.com/question/2485282#
- Determine the density of our sun at the end of its lifetime brainly.com/question/5189537
- Find out the kinetic energy of the emitted electrons when metal is exposed to UV rays brainly.com/question/5416146
Keywords: green light, frequency, the energy, a photon, Planck's constant, electrons, emitted, wavelength, joules
Answer:
Explanation:
1.)azeotrope is a mixture of two or more liquid components under constant boiling, it has a constant mole fraction composition of present component which can be homogeneous or heterogeneous.
2.)the condition which it's best performed when there's liquids that is non-volatile which boils higher than other liquids with at least 26 degrees .
steam azentropic distillation
3.During a steam distillation, How to know if the organic compound is still coming over is when you see the solution becoming cloudy or when there is existence of two layers.
4.)The end of the steam distillation, the receiving flask should contain two layers of liquid, and the chemical identity of these two liquids most contain
A.) Layers that are mostly water H2O
B.) Layers that are mostly products
5.)What is the purpose of adding 10% sodium carbonate solution to the distillate if it is acidic to litmus is to neutralize the distillate.
Answer:
ν = 7.04 × 10¹³ s⁻¹
λ = 426 nm
It falls in the visible range
Explanation:
The relation between the energy of the radiation and its frequency is given by Planck-Einstein equation:
E = h × ν
where,
E is the energy
h is the Planck constant (6.63 × 10⁻³⁴ J.s)
ν is the frequency
Then, we can find frequency,

Frequency and wavelength are related through the following equation:
c = λ × ν
where,
c is the speed of light (3.00 × 10⁸ m/s)
λ is the wavelength

A 426 nm wavelength falls in the visible range (≈380-740 nm)