Answer:
After measuring the solute, Carl should first dissolve the solid in a small amount of DI water before diluting to the total volume.
Explanation:
To ensure that all the solute dissolves in the solution, first dissolve the solid in less than the total volume of solution needed.
<span>The mass (in grams) of 8.45 x 10^23 molecules of dextrose is 252.798g
Working:
Mw. dextrose is 180.16 g/mol
therefore 180.16 grams dextrose = 1 mole
therefore 180.16 grams dextrose= 6.022x10^23 molecules (Avogadro's number)
We have 8.45 x 10^23 molecules of dextrose.
Therefore, (180.16 divided by 6.022x10^23) times 8.45x10^23
gives the mass (in grams) of 8.45 x 10^23 molecules of dextrose;
252.798.</span>
Answer:
Explanation:
A covalent compound is made when two or more nonmetal atoms bond by sharing valence electrons. The shared valence electrons between two nonmetal atoms is called a covalent bond. Covalent bonds are formed when two atoms begin sharing electrons
Answer:
The air pressure in the ears increases
The volume of air in the ears increases
The change in volume causes discomfort
It takes time for the ears to dispell excess air past the ear drum.
Explanation:
As the plane engages in a steep incline into the atmosphere, the outside atmospheric pressure decreases with altitude. The air pressure in the ear, therefore, become greater than atmospheric pressure. The air volume in the ear therefore grows and pushes on the ear causing discomfort. As the air in the cabin pressurizes the discomfort eases away as pressure equalization is restored relative to the ear.
<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05