Answer:
5' RG GWCCY 3'
3' YCCWG GR 5'
Explanation:
The enzyme PpuMI is a restriction endonuclease enzyme, it has a specific recognition site where it cut the DNA. The source of the enzyme is from an E. coli strain that carries the PpuMI gene from Pseudomonas putida (R. Morgan).
The enzyme PpuMI recognizes specific sequence with palindrome arrangement. It target the sequence 5' RGGWCCY 3'
target Sequence: 5' RGGWCCY 3'
3' YCCWGGR 5'
The enzyme cleavage point is at:
5' RG^GWCCY 3'
3' YCCWG^GR 5'
The product of the cleavage will give a sticky end Cleavage:
5' RG GWCCY 3'
3' YCCWG GR 5'
Note: R stands for purines (adenine and guanine). Y stands for pyrimidines (cytosine, thymine, and uracil). And W represents adenine or thymine.
Slow chemical change
It is a chemical change because the erosion is due to the chemical reaction between the acid and the in the rain and the calcium carbonate.
It is slow due to the concentration of acid is low.
The final temperature of the water is the equilibrium temperature, or the also the final temperature of the iron after a long period of time. Applying the conservation of energy:
m,iron*C,iron*ΔT = - m,water*C,water*ΔT
The density of water is 1000 g/mL.
(25 g)(0.449 J/g·°C)(T - 398 K) = - (25 mL)(1000 g/mL)(4.18 J/g·°C)(T - 298)
Solving for T,
<em>T = 298.01 K</em>
Answer:
C 8.09 SO2 gas
Explanation:
As we have the volume (3dm³ = 3L), temperature (25°C + 273 = 298K), and pressure (1atm), we can solve to moles of gas using:
PV = nRT
PV / RT = n
1atm*3L / 0.082atmL/molK*298K =¨
0.123 moles of gas you have.
Now, to convert these moles to mass we use molar mass (32g/mol for O2, 28g/mol for N2, 64g/mol for SO2, and 44g/mol for CO2).
Mass of 0.123 moles of these gases is:
O2 = 0.123 moles * 32g/mol = 3.94g of O2. A is wrong
N2 = 0.123 moles * 28g/mol = 3.4g of N2. B is wrong
SO2 = 0.123 moles * 64.1g/mol = 7.9g of SO2≈ 8.09g of SO2, C is possible
CO2 = 0.123 moles * 44g/mol = 5.4g of CO2. D is wrong
Right answer is:
<h3>C 8.09 SO2 gas
</h3>