Answer:
The correct option is b. an amino-terminal signal
Explanation:
A polypeptide that will eventually fold to become an ion channel protein, it means a kind of integral membrane protein, has an amino terminal signal that indicates its delivery to endoplasmic reticulum (ER) and then to the membrane. This type of signal usually consist in a nucleus of 6 to 12 aminoacids and one or more basic aminoacids. Once the polypeptide enters the ER, this signal is removed.
Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>
Answer:
A) coenzyme A
Explanation:
The NADH and FADH₂ are the energy rich molecules which are formed in the processes like glycolysis, TCA cycle and the fatty acid oxidation as they contain pair of electrons which have very high transfer potential.
As a result of the energy produced when these molecules transfer their electrons to the oxygen , ATP is generated by a series of electron carriers which collectively is called electron transport chain (ETC).
<u>The components of chain include Fe–S centers, Non-heme, FMN, coenzyme Q, and cytochromes .
</u>
The energy derived from the transfer of electrons is used to pump the protons across mitochondrial membrane.
As a result, an electrochemical gradient is generated which results in some energy which is then harnessed by the ATP synthase to form ATP.
The total number of valence electrons is 20.(1 from hydrogen, 5 from nitrogen, and 7 from each fluorine so 14 for both) connect all the atoms with a single bond( each bond counts as 2) so far there is 6 electrons so you need to fill in the rest of the 14 and you get the result in the picture.
Answer:
Passivation of Oxide layers of the metals.
Explanation:
Passivation is a non-electrolytic finishing process that makes most metals rust-resistant. The prosses removes free iron from the surface by using either nitric or citric acid. When this happens, it results to an inert, protective oxide layer that is very slow or less likely to chemically react with air and cause corrosion.
Passivity caused many of the metals several minutes to begin to react. Once the finishing process that makes metals less likely to react was eroded, reaction was initiated vigorously.