First, we have to get the initial [C6H8O6] = mass/molar mass
when the molar mass of C6H8O6 = 176.12 g/mol
∴[C6H8O6] = 0.25 g / 176.12 g/mol
= 0.00142 M
when
C6H8O6 ⇄ H+ + C6H7O6-
intial 0.00142 M 0 0
change -X +X +X
Equ (0.00142-X) X X
so, Ka = [H+][C6H7O6-] / [C6H8O6]
by substitution:
8 x 10^-5 = X * X / (0.00142-X) by solving this equation for X
∴ X = 0.000299
∴[H+] = 0.000299
∴PH = -㏒[H+]
= -㏒ 0.000299
= 3.52
Bohr's atomic model may have not been the accurate atomic model we have in the present, but he helped paved the way for accurate discoveries. His model is also called the planetary model. The nucleus, containing the neutrons and protons are situated at the center of the atom. The electrons are orbiting around the nucleus. The model is illustrated as shown in the attached picture.
In order to find the number of neutrons in the atom,
you need to calculate the difference between the top and bottom numbers
which means 272 - 111 = 161
Hope this helps
Answer:
Because milk has higher KE than ice, KE is transferred from the milk to the molecules of ice.
Explanation:
The best statement that expresses the transfer of kinetic energy(K.E) is that kinetic energy is transferred from the milk to the ice.
Kinetic energy is form of energy due to motion of the particles of a medium. In this regard, we are dealing with heat energy.
- Heat energy is dissipated from a body at higher temperature to one at a lower temperature.
- Ice is at a lower temperature which is 0°C
- Heat will be transferred in form of thermal energy from the body at higher temperature to one with a lower temperature.
- This is from the milk to the molecules of ice.
Answer:
The number on the lag label should be 15.
Explanation:
It seems your question is incomplete, as it is lacking the working values. An internet search showed me the full question, you can see it in the attached picture.
Let's say we have 100 g of the fertilizer.
- <em>45 g are of ammonium phosphate</em> ( (NH₄)₃PO₄ ), of which:
- 45 g (NH₄)₃PO₄ *
= 12.7 g are of Nitrogen.
(We used the molar mass of ammonium phosphate in the denominator and three times the molar mass of nitrogen in the numerator)
- <em>18 g are of calcium nitrate</em> (Ca(NO₃)₂), of which:
- 16 g Ca(NO₃)₂ *
= 2.73 g are of Nitrogen.
So in total there are (12.7+2.73) 15.43 g of Nitrogen in 100 g of the fertilizer. So the percent by mass of nitrogen is 15.43%.
Rounding to the nearest percent the answer is 15.